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Abstract 
 

Cloud services are required to be composed as a single service to fulfill the workflow 

applications. Service composition in Cloud raises new challenges caused by the diversity of 

users with different QoS requirements and vague preferences, as well as the development of 

cloud computing having geographically distributed characteristics. So the selection of the best 

service composition is a complex problem and it faces trade-off among various QoS criteria. 

In this paper, we propose a Cloud service composition approach based on evolutionary 

algorithms, i.e., NSGA-II and MOPSO. We utilize the combination of multi-objective 

evolutionary approaches and Decision-Making method (AHP) to solve Cloud service 

composition optimization problem. The weights generated from AHP are applied to the 

Crowding Distance calculations of the above two evolutionary algorithms. Our algorithm 

beats single-objective algorithms on the optimization ability. And compared with general 

multi-objective algorithms, it is able to precisely capture the users’ preferences. The results of 

the simulation also show that our approach can achieve a better scalability. 
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1. Introduction 

Cloud computing is a new paradigm that shares resources such as infrastructures, platforms, 

online applications as web services to cloud users, and recently many different web services 

are published and available in cloud data centers [1]. There are three types of services: 

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service 

(SaaS) [2]. In order to address the complexity of users’ requirements, most cloud services 

providers have to be coordinated to host their services. For example, SaaS providers can either 

utilize PaaS offerings (such as Google AppEngine) to develop applications, or rent virtual 

machines from IaaS providers (such as Amazon EC2) to deploy their own system environment. 

These selected multiple cloud services will be composed as one unified service to  host their 

requirements. 

The Cloud environment has a variety of service classes, and each workflow task can be 

completed by a specific service class. Each service class contains a number of service 

instances which have the same function but different QoS levels and prices. For example, 

Amazon EC2 can provide eight different QoS level service instances. Several service 

instances need to be composed to complete a workflow task, and the aggregate QoS of 

composed service also should meet the service level agreement (SLA) established through 

negotiation between users and service providers. SLAs are generally defined as end-to-end 

QoS requirements such as response time, reliability, cost and so on. In order to satisfy different 

SLA, the most suitable Cloud services need to be selected and deployed for optimization. 

The process of Cloud service composition is very complicated, which consists of service 

discovery, service selection, and service coordination optimization. It is difficult to find the 

optimal configuration scheme from massive candidates of the composed service, and the size 

of the search space will grow up exponentially with increasing of service instances. So service 

composition in Cloud raises new challenges caused by the diversity of users with different 

QoS requirements and vague preferences, together with the development of cloud computing 

having a geographically distributed manner. Furthermore, different conflicting QoS objectives 

need to be optimized under several constraints at the same time increasing complexity. 

Some evolutionary algorithms have been applied in Cloud service composition problem. In 

[3] and [4], single-objective genetic algorithm is used to solve service composition problem. 

They use the method of single-objective optimization to solve the multi-objective problems by 

assigning weights to each objective. But optimization capacity of this approach is not good 

enough compared with multi-objective evolutionary algorithms. There are two popular 

multi-objective evolutionary algorithms, namely NSGA-II (Non-dominated Sorting Genetic 

Algorithm-II) and MOPSO (Multi–Objective Particle Swarm Optimization). The two above 

algorithms are used to solve QoS-aware service composition problem both in [5] and [6]. A 

new multi-objective genetic algorithm proposed in [7] and [8], which uses the approach of 

data dimension reduction to reduce the number of optimization objectives, and decrease the 

complexity of the problem. The optimization capabilities of multi-objective evolutionary 

algorithms are better than single-objective algorithms. But in the case of users having no idea 

about the exact weights of each objective, the general multi-objective evolutionary algorithms 

just can give the Pareto-optimal set, rather than giving an exact solution. In [9], authors 

combine evolutionary algorithms and fuzzy logic method for composition optimization. This 

allows users to express their semantic requirement which brings a great comfort to them 

compared to systems that force users to assign exact weights for all preferences. However, it 
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just applies fuzzy Logic in the final obtained Pareto-optimal set, which would miss some 

excellent solutions.  

In this paper, we apply combination of multi-objective evolutionary approaches and 

Decision-Making method (AHP) for composition optimization. AHP is used to calculate the 

Crowding Distance instead of Euclidian Distance, and finds most satisfied solution in 

Pareto-individuals. Our main contributions can be summarized as follows: (1) we find the 

Pareto front composition solutions using different multi-objective algorithms (NSGA-II and 

MOPSO) and perform a comparative study between them for the Cloud service composition 

problem to determine which one will be suitable.  (2) we apply decision-making method AHP 

to calculate the weights of user preference, and the weights are used to calculate the Crowding 

Distance for the multi-objective evolution algorithms. Finally, the simulation results 

demonstrate that the service composition solution obtained by our approach can meet users’ 

preferences better. 

The remainder of this paper is organized as follows: in the following section, an overview of 

the service composition architecture and the problem definitions are presented. Section 3 

introduces a decision-making method for finding optimal solution in Pareto-individuals 

named AHP. Two evolutionary algorithms named NSGA-II and MOPSO for service 

composition are given in Section 4. In Section 5, several simulations of our algorithms are 

evaluated to compare with other existing approaches. We conclude the paper with a discussion 

and a description of future work in Section 6. 

2. Problem Formulation 

2.1 Service Composition Architecture  

A workflow is depicted as a Directed Acyclic Graph (DAG) ( , )G V E , where 1{ ,..., }nV t t  

and E is the vertices and edges of the graph, respectively. Each vertex represents a task t and 

there are n tasks in the workflow. The edges represent the precedence of different tasks. A 

directed edge from 
xt to yt , ,x y N means that yt can’t execute until

xt is completed [10]. Fig. 1 

shows an example of the workflow, each node represents a task, the arcs show the data transfer 

between nodes. There are 8 tasks:  1 2 3 4 5 6 7 8, , , , , , ,t t t t t t t t  and 8 specific service classes to 

complete each task,  1 2 3 4 5 6 7 8, , , , , , ,S S S S S S S S . Each service class iS represents a type of 

service including a set of atomic service ijs .The atomic service is a service instance offered by 

cloud provider, and different service instances operate at different QoS levels.  
 

 

 

Fig. 1. A Workflow example 

 

We have proposed a multiple services composition architecture for cloud workflow 

application, detailed in Fig. 2. The service requester submits initial goal descriptions of service 

implementation which is a series of abstract service components for workflow tasks, and 
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presents the corresponding QoS level requirements to the Cloud Service Coordinator using a 

SLA [11]. The Cloud Service Coordinator deployed four service components (showed as Fig. 

2) and it acts as an external, independent broker that can help users construct composited 

services. Then Service Discovery identifies all available candidate concrete services 

(published by service file) for a specific functionality. Next the Capability Planning evaluates 

the QoS capability of each service instance included in a service file and transforms the service 

request into cloud combination and service composition problem. Then the Service Selection 

picks the most appropriate Clouds and identifies the best service for service composition 

planning. Finally, the Service Composition obtains a composition plan, which is composed of 

a service composition sequence that can satisfy the requester’s goal, and creates the composite 

service process from the selected services using a combinatorial optimization method. 
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Fig. 2. Architecture of Service Composition. 

2.2 QoS Models 

The common SLAs for service composition are defined as the criterion of response time, 

reliability, and cost of an application. In order to judge whether a composed services satisfies the 

given SLAs, it is required to examine its end-to-end QoSs by aggregating QoS measures of 

individual services. There are four types of composition structures: sequential, parallel, 

conditional and loop. The aggregate functions for QoS computation of composed service are 

shown in Table 1. Where iT  is the response time, iR is the reliability, and iC is the cost for the 

service instance. When the service instances are from different Cloud Provider, there must exists 

network delay, so the aggregate service response time contains the response time of each service 

and the network latency between services. The latency between services L(i) is measurable and 

predictable which is not the focus of this paper. 
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Table 1. QoS Aggregate functions 

QoS Criteria Sequential Conditional Parallel Loop 

Response 

time (ms) 
1 2

( )
N N

i

i i

T T L i
 

    
1

N

i i

i

T p T


   
1maxN

i iT T  * iT k T  

Reliability(%) 
1

N

i

i

R R


  
1

N

i i

i

R p R


   
1minN

i iR R  ( )k

iR R  

Cost ($) 
1

N

i

i

C C


  
1

N

i i

i

C p C


   
1

N

i

i

C C


  * iC k C  

2.3 Problem Definition 

The optimization goal of cloud service composition is to find a solution with better performance 

and meet the users’ QoS requirements in a vast search space. Thus, for a given workflow 

application, how to select the suitable service for each task and compose these services to meet 

QoS requirements specified in SLA is a challenge.  

The final objective in our work is to find an optimized service composition which is able to 

maximize the reliability and minimize the deployment cost and time, while satisfying the 

users’ constraints. The reliability, cost and time is also considered as user’s constraint for each 

Cloud service. There are challenges to find an optimal composition as these objectives can 

conflict with each other. We find a way to combine multi-objective evolutionary algorithms 

and Decision-Making method (AHP) for composition optimization. AHP is applied on 

calculating the Crowding Distance of evolutionary algorithms. Now, we give some definitions 

and description of notations we will use in the flowing sections.  

Definition 1 (Non-dominated solution): Supposing there are two solutions 1 and 2 , 

considering all optimization objectives, if 
1  is higher than

2 at least in one objective, and the 

other objectives of both 1 and 2 are all equal, 1  dominates 2 ; if 1 is not dominated by any 

other solutions, 1  is non-dominated solutions, also known as the Pareto solution. 

Definition 2 (Pareto-Optimal front): That is a surface that formed by Pareto-Optimal 

solutions in space. The Pareto front solutions are not only dominated by the others within the 

Pareto-Optimal front but also dominated by the others out of the Pareto-Optimal front. 

We firstly provide the definitions of the terms and notions in Table 2 for future references. 
 

Table 2.  Notations 

Notation Description 

T  the response time of the composed service  

R  the reliability of the composed service  

C  the cost of the composed service 

M  number of optimized objectives 

N  the size of population in NSGA-II, and the number of particles of a swarm in 

MOPSO 
j

iQ  the j-th QoS criterion of individual i 

gpop  the population of the generation g in NSGA-II 

cp  the crossover probability in NSGA-II 

mp  the mutation probability in NSGA-II 

javascript:void(0);
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maxg  the max generation in NSGA-II 

tP  the particle swarm in the t iteration in MOPSO 

t

ix  the particle i in the t iteration in MOPSO 

t

iv  the velocity for particle i in MOPSO 

tPbest  the personal optimal particle in the t iteration in MOPSO 

tGbest  the groups optimal particle in the t iteration in MOPSO 

maxI  the max iteration in MOPSO  

max  

min  

the maximum of inertia weight in MOPSO 

the minimum of inertia weight in MOPSO 

1 2,c c  learning factors for the local optimal particle and group optimal particle in MOPSO 

3.  AHP Decision-Making Method  

There are multiple QoS criteria that need to be optimized in service composition. Most 

unskilled users usually have vague preferences to be unable to accurately assign weights for 

each QoS objectives. Several Pareto Front solutions will be generated from the evolutionary 

algorithms, so we have to find a way to filter them according to users’ preference. 

Decision-making methods have been effectively applied for determining the weight of 

QoS criteria, such as CRITIC [12], AHP [13], entropy method [14], TOPSIS method [15], and 

so on. All these methods can find a suitable solution for users in these Pareto front solutions 

without knowing the exact weights for each QoS objective. In this paper, we apply the weights 

generated from AHP to Crowding Distance of evolutionary algorithm. 

One way to optimize multi-objective service composition problem is to assign weights for 

each objective based on users’ preference. But in most cases, users just vaguely comprehend 

the relative importance of the two criteria, and they cannot make decision just based on the 

relative importance of ratios. The AHP approach has been proposed to handle the similar 

decision situations.  

The AHP is a multi-criteria decision-making approach which can be used to solve complex 

decision problems [16]. The pertinent data are derived by using a set of pairwise comparisons. 

These comparisons are used to obtain the weights of QoS criteria, and the relative performance 

measures of the alternatives in terms of each individual decision criterion. If the comparisons 

are not perfectly consistent, the AHP provides a mechanism for improving consistency. 

As an example which QoS criteria includes response time, cost, reliability and availability, 

the hierarchy structure is shown in Fig. 3.  

3.1 Assign weight to each metric 

Users adopt a pairwise comparison mechanism to determine the relative priority of each 

metric, and construct pairwise comparison matrix A. For example, we compare the relative 

importance between response time and cost, that is to determine which one has a greater 

impact to the user’s preference, and how much the degree of influence will be. Usually integer 

1-9 is used for pairwise comparison: 1 means the equal importance, 9 means the highest level 

of importance. After the pairwise comparison, matrix ( )ij m mA a   (m is the  number of 

metrics) is as Eq.1. 
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11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

                                                      (1) 

where 11,ii ji
ij

a a
a

  . The weights for each metric are given by the right eigenvector   

corresponding to the highest eigenvalue
max ( )A , the weight   derived by matrix  A, and 

obtained by the equation 
max 1( )* , ( ,..., )mA A       . 

 
Fig. 3. The AHP hierarchy model of service selection. 

3.2 Consistency check 

The purpose of consistency check is for testing coordination of the important degree between 

each metric. We have to avoid the contradiction situation,  i.e. for a user, A is more important 

than B, B is more important than C, and C is more important than A. For example, it is 

inconsistent in the case where a service user thinks that availability is strongly more important 

than reliability, and reliability is more important than cost, however the cost is more 

significant than availability to this user. The consistency index (CI) is shown as Eq.2.  

max

1

n
CI

n

 



                                                  (2) 

where n is the number of metrics. The consistency ratio (CR) is calculated as CICR
RI

 , 

indicates whether the evaluations are sufficiently consistent. The RI is obtained from the 

random consistency index table. If 0.1CR  , the consistency rate is acceptable; Otherwise, 

matrix A needs to be revised to be calculated again. Finally, the weight of each trust metric can 

be obtained. 

4. Multi-Objective Optimization of Service Composition  

Evolutionary algorithms have been effectively applied for solving optimization problems. 
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Among them, the NSGA-II and MOPSO outperform the other genetic optimization 

algorithms.  

4.1 Service composition optimization with NSGA-II 

Genetic Algorithm (GA) is a heuristic approach which contains selection, crossover and 

mutation operations to iteratively find near-optimal solutions in large search spaces [7][17]. 

NSGA-II is the most popular evolutionary approach to solve multi-objective optimization 

problem. The Non-Dominated sort and Crowding Distance are the cores of NSGA-II 

algorithm. The basic operations of NSGA-II are similar to GA, but in the selection process, 

NSGA-II uses non-domination sort and crowding distance to sort the individuals in 

population. 

In the process of NSGA-II, a population is initialized with N individuals firstly, then the 

rank of non-domination sort and the crowding distance for each individual are calculated. 

Binary tournament selection is used to select offsprings. The individual with higher 

non-domination rank and longer Crowding Distance has more probability to be selected. Then 

the offsprings goes in to genetic operations, i.e. crossover and mutation. After that, the 

population contains parent population and offsprings which are sorted based on 

non-domination sort and crowding distance. Only the best N individuals are selected into the 

next iteration population. 

Algorithm 1 shows the optimization process in NSGA-II, a rank-based roulette wheel 

selection scheme is used to implement the selection operation. 

 
Algorithm 1 EVOLUTION PROCESS IN NSGA-II  

Input: maxg ,
cp ,

mp ,N,M 

Output: best population 
bpop  

1.    Set 
maxg //set the maximum generation. 

2.     Initializing a population gpop randomly.  

3.  FOR  g=1: maxg { 

3.1  gNDS =non-domination-sort ( gpop )// rank individual by non-dominant sort. 

3.2 gCD = crowding-distance-calculation ( gpop ) // calculate crowding distance of individuals 

with same gNDS . 

3.3 offsprings= selection ( gpop , gNDS , gCD ) // generate a new population according to 

non-dominant rank and crowding distance. 

3.4 offspringc= crossover (offsprings, cp ) //execute crossover operation to population. 

3.5  offspringm= mutation (offsprings, mp )  // execute mutation operation to population. 

3.6  popcomb= gpop + offspringm //combine the former population and the generated population 

by evolutionary operation. 

3.7 popcombNDS =non-domination-sort (popcomb) // rank each individual according to 

non-dominant sort for the combined population. 

3.8 popcombCD = crowding-distance-calculation (popcomb) // calculate crowding distance of 

individuals with same gNDS for the combined population. 

3.9 popcombs= selection (popcomb) // get a new population according to non-dominant rank and 
crowding distance. 

3.10 1gpop  = popcombs//get the next generation population. 
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3.11 g=g+1} 
END 

 
A. Non-Dominated sort  

In the search space of multi-objective service composition, there exists a set of solutions 

which are superior to the others with consideration of all QoS criteria. These solutions are 

known as Pareto-optimal solutions or non-dominated solutions. We assign ranks to all 

solutions in population based on domination relationship. The solution with higher rank 

dominates the lower one. 

Fig. 4 shows an example of non-dominated sort with two QoS criteria. In this example, we 

need to maximize reliability and minimize cost. We examine non-dominated sort rank for six 

individuals as shown in this figure.Individuals A, B, C are in the first rank, which are called 

non-dominated individuals or Pareto-Optimal solutions. Solutions D, E are in the second rank, 

which are dominated by the first rank class individuals. Similarly, solution F is in the third 

rank. 

 
Fig. 4. An example domination ranking 

 

Algorithm 2 shows the non-dominated sort process in NSGA-II. ( )gpop r is individuals 

whose rank is r. ( )rank i  is the rank for individual i. The QoS values of composed service are 

calculated as in Table1. 

 
Algorithm 2 NON-DOMINATED SORT 

Input: population gpop  

Output: ranks for all individuals 

1. Set r=1    

2. WHILE size( gpop )≠0; // loop until each individual has been assigned non-dominated rank. 

3. FOR i=1: size( gpop ) 

 FOR j=1: size( gpop ) 

   dom_less=0; dom_more=0; dom_equal=0; 

     FOR k=1:M   //comparing every optimization objective for each individual.  

         IF
k k

i jQ Q   

           dom_less= dom_less+1; 
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         ELSEIF
k k

i jQ Q   

           dom_ more = dom_ equal +1; 

         ELSE 
           dom_ equal = dom_ more +1; 

        END 

END 
    IF dom_less=0 and dom_ equal≠M 

      dominated_number(i)=dominated_number(i)+1; // calculate the number of individuals which 

dominate individual i. 

    ELSEIF dom_ more =0 and dom_ equal≠M 

  dominate_indi(i)= dominate_indi(i)+individual (j);//get the individuals  dominated by individual i; 

  END 

END 

IF dominated_number(i)=0 

  rank(i)=r; 

END 

END 

( )g g gpop pop pop r  //get individuals that have not been assigned rank; 

r=r+1; 

END 

 
B. Crowding distance 

Crowding distance is used to sort individuals with the same rank, and determine the 

probability entering into the next generation for each individual. The basic idea of the crowing 

distance is calculating the Euclidian distance between each pair of neighbor individuals in a 

rank class for all QoS criteria. Crowing distances of the individuals in the boundary are always 

set as infinite [18].The individual with higher rank has greater probability to be selected. When 

the two individuals are in the same non-dominated rank, the one with greater crowding 

distance should be selected, which means less individuals around it. 

Algorithm 3 shows the process of calculating the Crowding Distance in NSGA-II. The 

Crowding Distance 
iCD of individual i is calculated by Eq. 3. 

 

1 1

2

max min
1

( )

i iN
j j

i

i j j

Q Q
CD

Q Q

 







                                               (3) 

 
Algorithm 3 CROWDING DISTANCE CALCULATION 

Input: ( )gpop r  (individuals whose rank are r) 

Output: 
iCD  (crowding distance for individual i) 

FOR each rank class individuals ( )gpop r  

  s=size( ( )gpop r ); 

    FOR j=1:M 

    
1 , sCD CD     

       FOR i=2:(s-1) 

Calculate 
iCD  according to Eq.3 

END 

END 
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       Sort individuals in ( )gpop r  based on 
iCD  

END 

 

4.2 Service composition optimization with the MOPSO 

Particle Swarm Optimization (PSO) is a popular evolutionary algorithm [19]. The 

optimization process in PSO is very similar to GA. The PSO first initialize a group of particles 

from the search space, each particle represents a solution. The position, velocity and fitness are 

the three indicators of the particles, and fitness functions are defined to calculate the fitness 

values for all of the criteria. Particle travels in the search space, it update position by tracking 

personal optimal particle( Pbest )and global optimal particle( Gbest ). Pbest is the personal 

best known position which is the optimal solution in a iteration, while Gbest is the best known 

positions in the previous iterations. Once particle updates its position, the fitness value is 

calculated, Pbest and Gbest are updated too. Thus, the whole particle swarm proceeds toward 

optimal fitness value, and achieves optimization in the search space. 

In the multi-objective PSO, there also exist many Pareto-optimal solutions, and we 

introduce Non-dominated sort and Crowding Distance to find the personal optimal particle 

and group optimal particle. In the t-th iteration, there are N particles, the position of particle i is 

,1 ,2 ,[ , ,..., ]t t t t

i i i i Mx x x x ,and
,1 ,2 ,[ , ,..., ]t t t t

i i i i Mv v v v ,the personal optimal positions for all particles 

are 1 2[ , ,..., ]NPbest Pbest Pbest Pbest , the global optimal particle is Gbest  , we can calculate 

the position and velocity for the t+1-th iteration using Eq.4 and Eq.5. 
 

1 2

1

1 2( ) ( )
i i

t t t t t t t

i i i i iv v c r Pbest x c r Gbest x                               (4) 
 

         1 1t t t

i i ix x v                                                              (5) 
 

where
1i

tr and
2 i

tr are random numbers within (0,1); t  is the inertia weight, which represents 

the inheritance for the previous iteration's speed, 
max max min

max

( )*t t

I
      , Algorithm 

4 shows the optimization process in MOPSO. 

 
Algorithm 4 EVOLUTION PROCESS IN MOPSO 

Input: 
maxI , M,N, max min,  ,

1 2,c c  

Output: Best particle swarm bP  

Step1. Set maxI , max min,  , 1 2,c c  

           Set t=1, (1, )t

iv zeros M  

           Set bounds of velocity and position for individuals 

Step2. Initial initializing a particle swarm 
tP . 

non-dominated-sort (
tP )//calculate the non-dominate sort rank of individuals 

crowding-distance (
tP )// calculate the crowding distance of individuals 

get Pbest , Gbest  

Step3. Repeat until t= maxI { 

max max min

max

( )*t t

I
        

FOR i=1:N  
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Calculate 
1t

iv   and
1t

ix 
according to Eq.4 and Eq.5 respectively 

IF   
1t

ix 
better than 

iPbest  

    
iPbest = 

1t

ix 
 

END 

IF
1t

ix 
better than Gbest  

   Gbest =
1t

ix 
  

END 

END 

get a particle swarm with N number particles
1tP 
 

t=t+1 

} 

 
The initialization stage is shown in Step 1 and Step 2. In Step 1, we set constant variables 

and initialize velocity for each particle as 0, positions and velocities are also restricted 

according to the range of solution space. In Step 2, the algorithm initializes particles scattering 

randomly in the solution space, and use non-dominated sort and crowding distance to 

find Pbest and Gbest of the initialized particle swarm. Step 3 is the iteration stage, which uses 

Eq. 4 and Eq.5 to generate a new particle swarm to update the Pbest and Gbest . Then the 

algorithm gets a new particle swarm for the next iteration. The step 3 is looped until the 

maximum iteration, and Pareto-optimal solutions are generated.  

4.3 AHP based multi-objective evolutionary algorithms  

The non-dominated solutions generated by the multi-objective evolutionary algorithms have 

their own excellent aspects. While without knowing the weights of QoS criteria, it is difficult 

to find the most preferred solution for users. Most users have some vague idea regarding the 

optimized objectives. In this case, we can use AHP method to capture the importance 

relationship of objectives, and find the composition solution which is the most appealing 

preference to the users.  

In most existing works [9], researchers use decision-making methods to find the most 

preferred solution from the obtained Pareto-optimal set. However, with the increasing of 

problem size, the solutions in the Pareto-optimal set become unnumbered, and this approach 

may neglect some excellent solutions. In this paper, we combine AHP method with 

multi-objective algorithms by applying AHP to calculate Crowding distance instead of using 

Euclidian distance to sort the individuals.  Based on above two multi-objective algorithms and 

AHP, NSGA-II-AHP and MOPSO-N-AHP are proposed, which can satisfy the users’ 

preferences better. The new crowding distance iNCD for solution i is calculated in Eq.6. 
 

'

1

*
N

i

i j j

i

NCD Q


                                                 (6) 

 

where j  is the weight for objective j obtained by AHP, and 'i

jQ is the quality value of solution 

i for j-th objective which has been normalized. The normalized QoS criteria of 'i

jQ can be 

calculated as Eq. 7.  

'

i

j ji

j

j j

Q Q
Q

Q Q



 





                                                                (7) 
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For the positive QoS criteria to be maximized, the ideal value max

j jQ Q  , which is the 

maximum of the j-th objective value for all solutions in a population, and min

j jQ Q   which is 

the minimum, while for the negative criteria to be minimized, the ideal value   
min

j jQ Q  , max

j jQ Q  . 

5. Evaluation  

Firstly, we evaluate and compare the performance of NSGA-II and MOPSO in addressing the 

problem of workflow service composition. Then our method of combination AHP with 

NSGA-II and MOPSO is evaluated respectively compared with the other existing algorithms.  

5.1 Simulation setup and data collection  

The data of web services are obtained from QWS Dataset (2.0) [20]. We select three attributes 

as the QoS criteria. Q={response time(ms), reliability(%), cost($)}.The simulated workflow 

has been shown in Fig. 1. All the experiments are performed on computers with Inter Core 

i5-4570S CPU(2.9GHz and 8G RAM). 

In our simulations,  1 2 8, ,...,R R R R  represents 8 service requirements, and we get 8 

service functionality classes  1 2 8, ,...,S S S S  , and each of them includes 80 service instances 

provided by 8 geographically distributed Cloud Providers (CPs). The 

 1 2 3, ,Cons cons cons cons , 1 2 3, ,cons cons cons are defined as the constraints of response 

time, the reliability and the cost in order. In reality, QoS constraints defined in SLA are 

generated through the negotiation between users and CPs. In order to evaluate our approach 

efficiently, we define the QoS constraints according to the number of service sets shown in 

Eq.8-Eq.10. 
1 * *cons T m L m                                                   (8) 

2 ( )mcons R                                                      (9) 

       3 *cons C m                                                    (10) 

 

where m is the number of service classes, T , R and C is the average response time, average 

reliability and average cost for the all service instances respectively. L  is the average latency 

between each two CPs. For two continuous services from the same CP, the latency is zero. For 

two services from different CPs, there will be network delay. The latencies (ms) are generated 

depending on their distance and it is within the range [100,200]. 

The probability of crossover cp and mutation mp in NSGA-II are 0.8 and 0.2 respectively. 

Our genetic algorithm uses rank-based roulette wheel scheme for selection operation. In the 

MOPSO, the maximum and minimum of inertia weight max , min are set as 0.9 and 0.4, 

learning factors 1 2,c c are set as 2.  

We configure NSGA-II and MOPSO to run 100 generations with 50 individuals (or 

particles), the algorithm examines 5050 individuals at most, which is able to find excellent 

Pareto-optimal solutions within limited time. 
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5.2 Comparing of NSGA-II and MOPSO  

To evaluate the performance of our algorithms, convergence and diversity are normally 

considered. The distance between the Pareto-front generated by the proposed algorithms and 

the real Pareto front, should be minimized as zero so that the estimated Pareto-front converges 

to the real value. In this experiment, we use exhaustive search method to obtain the real Pareto 

fronts. The performances of the above algorithms are compared in terms of the execution time, 

IGD (inverse generational distance) and Spread [21]. 

IGD calculated by Eq.11 determines the convergence of the algorithms, which is the 

average distance of the obtained solution points from the real  Pareto fronts. 
 

                                                

2

1

N

ii
d

IGD
N





                                                          (11) 

 

where the
id is the Euclidean distance between the obtained solution points and the closest 

point of the real  Pareto front and N is the number of the obtained solutions. Hence, 0IGD   

indicates that the obtained solutions are in the real  Pareto front [9]. 

Spread in Eq. 12 illustrates the diversity of the algorithms [22], and it is a metric to 

calculate the broadness.  
1

1

( 1)*

N

f l ii

f l

d d d d
Spread

d d N d




  


  


                                   (12) 

 

where  
id is the Euclidean distance between two neighbor points obtained. fd  and

ld are the 

Euclidean distance of the two boundary points in the obtained Pareto front set. 

0Spread  means that the obtained Pareto front perform well in diversity. 

It would take a long time to find the optimal Pareto fronts for a relatively large search 

space through exhaustive search method, so we decrease the size of the search space to test the 

performance of the two algorithms. We calculate 95% Confidence Interval (CI) for each 

indicator of two algorithms in 30 independent runs. The smaller IGD, the better convergence 

property the algorithm has, so as the Spread. Fig. 5 and Fig. 6 have shown the outputs and-the 

optimal Pareto front obtained from NSGA-II and MOPSO.  

 

      
(a) Output of NSGA-II                                                (b) Output of MOPSO 

 

Fig. 5. Outputs of NSGA-II and MOPSO 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 9, September 2015                                  3307 

      
(a) Pareto front of NSGA-II                                  (b) Pareto front of MOPSO 

Fig. 6. Pareto front of NSGA-II and MOPSO 

 

As shown in Table 3, we measured the averagevalue (Avg), standard deviation (STD) and 

95% CI of execution time, IDG and Spread respectively by running NSGA-II and MOPSO. 

We can see NSGA-II performs better than MOPSO according to execution time, because 

MOPSO would cost some time to calculate every particle’s velocity. It also demonstrates that 

the NSGA-II has better diversity and the better convergence ability than MOPSO. 

 

Table 3. Comparison of Performance for the two Evolutionary Algorithms 
 Execution time (s) IGD Spread 

Avg STD 95% CI Avg STD 95% CI Avg STD 95% CI 

NSGA-II 1.359 0.055 [1.333, 1.384] 0.015 0.019 [0.0056,0.0233] 0.563 0.059 [0.536,0.590] 

MOPSO 2.577 0.032 [2.562,2.592] 0.027 0.021 [0.0173,0.0365] 0.610 0.078 [0.574,0.647] 

 

5.3 Evaluation of the evolutionary algorithms with AHP 

We use the decision-making method AHP to obtain weight of each optimization objective 

which will be used in the evolutionary algorithms later. 

In following experiments, the relative importance value between the response time and the 

reliability is set to be 3,  i.e. 12 3a  , similarly, we set 13 8a  that represents the relative 

importance value between the response time and the cost and 23 5a  that represents the 

relative importance value between the reliability and the cost. We get 

(0.6612,0.2718,0.0670)T  , the CI=0.07597, which is less than 0.1. 

For the purpose of comparison, the following approaches were used. 

1. GA with AHP: It applies AHP to obtain weights of objectives, transforming the 

multi-objective service composition problem as a single-objective problem, and using the 

single-objective GA to find the optimal solution. 

2. PSO with AHP: It is similar to GA with AHP, combining AHP and single-objective 

PSO to find the optimal solution. 

3. NSGA-II with AHP: It first obtains the Pareto-optimal solution set by running NSGA-II, 

and then using AHP to find the most satisfied solution. 

4. MOPSO with AHP: It is similar to NSGA-II with AHP, while using MOPSO to find 

Pareto-optimal solution set.  
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5. NSGA-II-AHP: It is our proposed approach which applies AHP method to calculate 

Crowding distance of NSGA-II instead of Euclidian distance. 

6. MOPSO-AHP: It is our proposed approach which applies AHP method to calculate 

Crowding distance of MOPSO. 

We measured the response time, the reliability and the cost by running the above six 

algorithms respectively shown as Table 4. It can be seen that the optimization ability of 

multi-objective algorithms are much better than the single-objective GA and PSO with AHP. 

Compared with the most existing methods, our approaches which apply AHP on calculating 

the Crowding distance in NSGA-II and MOPSO are able to meet user’s preferences better. 

 
Table 4. Performance Comparing of Evolutionary Algorithms with AHP 

Approach Response time (ms) Reliability (%) Cost($) 

Avg 95% CI Avg 95% CI Avg 95% CI 

GA with AHP 1408.1 [1300.47, 1515.75] 14.1 [10.69, 17.43] 842.2 [831.49, 852.91] 

PSO with AHP 1648.7 [1391.36 ,1909.01] 14.4 [10.24, 18.46] 878.8 [844.41,913.22] 

NSGA-II with AHP 1224.3 [1130.55,1288.13] 28.7 [27.98 ,29.33] 832.0 [818.45,847.77] 

NSGA-II-AHP 1131.4 [1089.92, 1172.84] 24.6 [21.24, 27.95] 830.2 [815.15,845.25] 

MOPSO with AHP 1190.1 [1043.57, 1336.53] 19.7 [18.32, 21.04] 837.7 [825.49,849.91] 

MOPSO-AHP 1036.4 [980.42 ,1092.42] 19.3  [18.85, 19.79] 846.2 [834.33,858.07] 

 

To evaluate the scalability of our algorithm, we compared the output QoS values of 

different approaches with an increasing problem size. The QoS criteria of service instances are 

generated randomly as a Gaussian distribution. The response time (ms) has a mean value of 

1000 with standard deviation of 20. The mean value of reliability (%) and cost($) are 90 and 

100 respectively, the standard deviation of them are 5 and 10 respectively. We 

set (0.6612,0.2718,0.0670)T   which is the same as the one in previous experiments, and it 

means that, for users, the most preferred objective is response time. Population size in 

NSGA-II and  MOPSO are 100, the iterations number are set as 100. We have run each 

algorithm independently for 30 times under an increasing number of service instances.  

Table 5 presents the compared average QoS values of composited services by running 

different approaches with increasing number of service instances. As shown in Table 5, our 

proposed approaches perform better with the increasing number of service instances. 
 

Table 5. Comparing of different approaches with increasing number of service instance 

Number of service 

instances 

Approach Response time 

(ms) 

Reliability 

(%) 

Cost($) 

80 

NSGA-II with AHP 4522.97 61.856 816.6 

NSGA-II - AHP 4319.14 64.217 895.72 

MOPSO with AHP 5086.96 56.921 931.05 

MOPSO-AHP 4905.4 49.37 936.24 

160 

NSGA-II with AHP 4569.75 71.409 819.66 

NSGA-II-AHP 4092.56 67.719 859.73 

MOPSO with AHP 5125.20 55.976 915.68 

MOPSO-AHP 4843.79 52.199 934.10 

320 
NSGA-II with AHP 4145.56 67.934 828.12 

NSGA-II - AHP 4005.05 60.63 889.25 
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MOPSO with AHP 4857.51 57.496 912.96 

MOPSO - AHP 4801.62 53.432 906.05 

640 

NSGA-II with AHP 4232.74 67.663 862.91 

NSGA-II - AHP 4004.95 63.271 852.14 

MOPSO with AHP 4989.97 53.969 909.90 

MOPSO - AHP 4844.12 50.558 888.52 

800 

NSGA-II with AHP 4196.49 67.62 843.15 

NSGA-II - AHP 3946.19 63.77 833.88 

MOPSO with AHP 5042.77 50.531 847.38 

MOPSO- AHP 4683.68 51.386 901.25 

6. Conclusion and Future Work 

In this paper, we have addressed the problem of service composition in geographically 

distributed multi-cloud environment with SLA constraints. We present a service composition 

architecture and QoS models for Cloud Workflow application, which helps us to describe a 

service composition optimization problem. We have also proposed algorithms which apply the 

combination of multi-objective evolutionary approaches and Decision-Making method (AHP) 

to solve the composition optimization problem. Our algorithm beats normal evolutionary 

algorithms on the optimality and scalability. The results of the simulation indicate that our 

approach is able to precisely capture the preferences of users. In the current approach, the 

actual resources deployed in cloud environment are not considered. In our future work, we aim 

at optimizing the resource configuration via our service composition method. This will make 

our approach more practical and effective. 
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