• Title/Summary/Keyword: distributed autonomous control

Search Result 93, Processing Time 0.025 seconds

A Droop Control for the Autonomous Operation of DC Distribution System using Grid-tied Converter and Energy Storage (직류급전 시스템의 Autonomous Operation을 위한 교류연계장치와 에너지 저장의 Droop Control)

  • Lee, Ji-Heon;Cha, Min-Young;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.32-33
    • /
    • 2010
  • This paper describes a droop control method for the autonomous operation of DC distribution system using distributed generations and energy storage. The method suppress the circulating current, and each unit could be controlled autonomously without communication system. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation and battery was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The simulation and experimental results confirms that the proposed DC distribution system make it feasible to provide power to the load stably and verify effectiveness of the proposed method.

  • PDF

Two tales of platoon intelligence for autonomous mobility control: Enabling deep learning recipes

  • Soohyun Park;Haemin Lee;Chanyoung Park;Soyi Jung;Minseok Choi;Joongheon Kim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.735-745
    • /
    • 2023
  • This paper surveys recent multiagent reinforcement learning and neural Myerson auction deep learning efforts to improve mobility control and resource management in autonomous ground and aerial vehicles. The multiagent reinforcement learning communication network (CommNet) was introduced to enable multiple agents to perform actions in a distributed manner to achieve shared goals by training all agents' states and actions in a single neural network. Additionally, the Myerson auction method guarantees trustworthiness among multiple agents to optimize rewards in highly dynamic systems. Our findings suggest that the integration of MARL CommNet and Myerson techniques is very much needed for improved efficiency and trustworthiness.

Bluetooth Network for Distributed Autonomous Robotic System

  • Whang, Se-Hee;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2346-2349
    • /
    • 2005
  • Distributed Autonomous Robotic System (DARS) is defined as a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the DARS, a robot contains sensor part to percept the situation around themselves, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, Bluetooth is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots such as DARS robots. For this purpose, The Bluetooth communication system must have several features. The first, this system should be separated from other robot parts and operate spontaneously and independently. In other words, this communication system should have the ability to organize and maintain and reorganize a network scheme. The next, this system had better support any kinds of standard interfaces in order to guarantee flexible applicability to other embedded system. We will discuss how to construct and what kind of procedure to develop the network system.

  • PDF

Experimental research on the autonomous mobile robotics

  • Yuta, Shin'ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.17-17
    • /
    • 1996
  • An experimental research is a useful approach for realizing autonomous mobile robots to work in real environment. We are developing an autonomous mobile robot platform named "Yamabico" as a tool for experimental real world robotics research. The architecture of Yamabico is based on the concept of centralized decision making and functionally modularization. Yamabico robot has two level structure with behavior and function levels, and its hardware and software are functionally distributed for providing incremental development and good maintenancibility. We are using many Yamabico robots in our laboratory to realize the robust navigation technology for autonomous robots. The methodology for experimental and task-oriented approach of mobile robotics will be presented. And some experimental results of real world navigation in indoor and outdoor environment will be shown. be shown.

  • PDF

Autonomous Operation Analysis of DC Microgrid based on Droop Control (Droop 제어를 기반으로 한 직류 마이크로그리드의 자율 동작 분석)

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.342-350
    • /
    • 2011
  • This paper describes the autonomous operation analysis of DC microgrid based on droop control. In order to verify the whole system operation, detailed simulation models for wind power generation, solar power generation, and battery were developed with user-defined models programmed with C-code in PSCAD/ EMTDC software. The simulation results confirm that the DC microgrid with droop control make it feasible to provide power to the load with stable manner. Based on simulation results a prototype of DC microgrid was built and tested in the lab to verify the autonomous operation experimentally. The droop control scheme can suppress the circulating current, and offers each unit to be controlled autonomously without any communication link.

A distributed algorithm for the coordination of dynamic barricades composed of autonomous mobile robots

  • Lee, Geun-Ho;Defago, Xavier;Chong, Nak-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2030-2035
    • /
    • 2005
  • In this paper, we study the distributed coordination of a set of synchronous, anonymous, memoryless mobile robots that can freely move on a two-dimensional plane but are unable to communicate directly. Based on this model, we analyze the application problem that consists in having a group of robots form a barricade line to protect from car traffic a crowd of demonstrators parading on the street. For the sake of robustness, we privilege fully decentralized solutions to the problem. In particular, we give a self-stabilizing distributed algorithm to address the problem, in this presentation

  • PDF

Localization and a Distributed Local Optimal Solution Algorithm for a Class of Multi-Agent Markov Decision Processes

  • Chang, Hyeong-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.358-367
    • /
    • 2003
  • We consider discrete-time factorial Markov Decision Processes (MDPs) in multiple decision-makers environment for infinite horizon average reward criterion with a general joint reward structure but a factorial joint state transition structure. We introduce the "localization" concept that a global MDP is localized for each agent such that each agent needs to consider a local MDP defined only with its own state and action spaces. Based on that, we present a gradient-ascent like iterative distributed algorithm that converges to a local optimal solution of the global MDP. The solution is an autonomous joint policy in that each agent's decision is based on only its local state.cal state.

An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots (자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Development of Autonomous Sprayer Considering Tracking Performance on Geometrical Complexity of Ground in Greenhouse

  • Lee, Dong Hoon;Lee, Kyou Seung;Cho, Yong Jin;Lee, Je Yong;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.287-295
    • /
    • 2012
  • Purpose: Some of the most representative approaches are to apply next generation technologies to save energy consumption, fully automated control system to appropriately maintain environmental conditions, and autonomous assistance system to reduce labor load and ensure operator's safety. Nevertheless, improvement of upcoming method for soil cultured greenhouse has not been sufficiently achieved. Geometrical complexity of ground in protected crop cultivation might be one of the most dominant factors in design of autonomous vehicle. While there is a practical solution fairly enough to promise an accurate travelling, such as autonomous sprayer guided by rail or induction coil, for various reasons including the limitation of producer's budget, the previously developed sprayer has not been widely distributed to market. Methods: In this study, we developed an autonomous sprayer considering travelling performance on geometrical complexity of ground in soil cultured greenhouse. To maintain a stable travelling and to acquire a real time feedback, common wire with 80 mm thick and body frame and sprayer boom. To evaluate performance of the prototype, tracking performance, climbing performance and spraying boom's uniform leveling performance were individually evaluated by corresponding experimental tests. Results: The autonomous guidance system was proved to be sufficiently suitable for accurate linear traveling with RMS as lower than approximately 10 cm from designated path. Also the prototype could climb $10^{\circ}$ of ground's slope angle with 40 kg of water weight. Uniform leveling of spraying boom was successfully performed within $0.5^{\circ}$ of sprayer boom's slope. Conclusions: Considering more complex pathways and coarse ground conditions, evaluations and improvements of the prototype should be performed for promising reliability to commercialization.