• Title/Summary/Keyword: distillation technique

Search Result 46, Processing Time 0.023 seconds

Development a High-Efficiency Induction Heating Heater using a 5[kW] Class Full-Bridge High Frequency Resonant Inverter (5[kW]급 풀-브릿지 고주파 공진형 인버터를 이용한 고효율 유도가열 히터 개발)

  • Kwon Hyuk-Min;Shin Dae-Cheul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.481-487
    • /
    • 2005
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter, By using high frequency inverter high frequency alternative current in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. This paper proposes new fluid heating method. Which is operated as follows. Working coil, which is wrapped outside of pipeline, makes the eddy current. Inside of heating vessel in isolated pipeline the specially designed stainless metallic package is inserted, which can be heated by eddy current losses. And then In this paper are discussed action analysis and characteristics analysis of 5[kW] class full-bridge resonant inverter system and resonant metallic package. In addition, by using this system, how high-efficiency heater is developed and application of system are also discussed.

A Study on the Frequency Control on the Induction Heating System Using Two Step Resonant Inverter (공진형 인버터를 이용한 2단 유도가열 시스템의 주파수제어에 관한 연구)

  • Yoo, Jae-Hoon;Shin, Dae-Cheul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • Proposed induction-heated system is innovative system which applied special high-frequency power circuit technique for thermal converse technique and IH(Induction-Heating) magnetic induction heating generated from induction-heated metallic package that is for distillation unit. In this occurs not burning, so that the working environment can be improved. This electromagnetic induction heating technique is used high frequency inverter. By using high frequency inverter high frequency alternative current (HFAC) in the range of [kHz] can be made with conventional alternative current. In this contribution IGBT module is used for high frequency inverter. In this paper are discussed action analysis and characteristics analysis of 1.5[kW]-Class half-bridge resonant inverter system and resonant metallic package. In addition, by using this system, how two step heating superheated steam generator is developed and application of system are also discussed.

Determination of Methylmercury in Biological Samples Using Dithizone Extraction Method Followed by Purge & Trap GC-MS

  • Lee, Jung-Sub;Ryu, Yoon-Jung;Park, Jae-Sung;Jeon, Sung-Hwan;Kim, Sam-Cwan;Kim, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2293-2298
    • /
    • 2007
  • In this study, a dithizone extraction technique involving purge & trap GC-MS was developed for the determination of methylmercury in biological samples, especially blood and fish. After alkaline digestion, methylmercury in biological samples was extracted into dithizone and back-extracted into aqueous sulfide solution. The extracted methylmercury was converted to the volatile ethyl derivative, purged and trapped onto a solid-phase collection medium, and then introduced into the GC-MS system. The determined MDLs of the established method were 0.9 ng·g?1 for biological samples and its accuracy and precision were found to be 93% and 3.8%, respectively. The method was validated by analysis of CRMs such as SRM 966, BCR 463 and IAEA 407 and all analytical results were within certified ranges with average RSDs of less than 6%. The analytical results of field-sampled fish also showed that the method can be successfully used as an alternative for commonly used distillation method followed by GC-CVAFS detection.

Hydrogen Isotope Separation by using Zeolitic lmidazolate Frameworks (ZIF-11) (ZIF-11을 이용한 수소 동위원소 분리)

  • Lee, Seulji;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.655-659
    • /
    • 2020
  • Hydrogen isotopes (i.e. deuterium and tritium) are supplied to the tokamak in the International Thermonuclear Experimental Reactor (ITER) fuel cycle. One important part of the ITER fuel cycle is the recycling of unused fuel back to the tokamak, as almost 99 % of fuel is unburned during fusion reaction. For this, cryogenic distillation has been used in the isotope separation system (ISS) of ITER, but this technique tends to be energy-intensive and to have low selectivity (typically below 1.5 at 24 K). Recently, efficient isotope separation by porous materials has been reported in the so-called quantum sieving process. Hence, in this study, hydrogen isotope adsorption behavior is studied using chemically stable ZIF-11. At low temperature (40 K ~ 70 K), the adsorption increases and the sorption hysteresis becomes stronger as the temperature increases to 70K. Molar ratio of deuterium to hydrogen based on the isotherms shows the highest (max. 14) ratio at 50 K, confirming the possibility of use as a potential isotope separation material.

Lightweight Deep Learning Model for Heart Rate Estimation from Facial Videos (얼굴 영상 기반의 심박수 추정을 위한 딥러닝 모델의 경량화 기법)

  • Gyutae Hwang;Myeonggeun Park;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2023
  • This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

Analysis of Aroma Compounds of Cinnamon by Solid Phase Microextraction (Solid Phase Microextraction을 이용한 계피의 향기성분 분석)

  • 이창국;이재곤;장희진;곽재진
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2003
  • The volatile components of cinnamon bark were extracted by using different isolation methods, simultaneous distillation extraction (SDE) and solid phase microextraction (SPME). Then the volatile components were analyzed by gas chromatography(GC) and mass selective detector(MSD). 30 compounds were identified in cinnamon bark. In SPME technique, several factors influencing the equilibrium of the aroma compounds between sample and SPME fiber was taken into account, including the kind of SPME fiber, extraction temperature and extraction time. Four different SPME fibers were tested, namely polydimethylsiloxane (PDMS), poly acrylate(PA), divinyl- benzene-carboxen-polydimethylsiloxane (DVB/CAR/PDMS) and carbowax/divinylbenzene(CW/DVB). Among these SPME fiber, PDMS coating fiber showed the best results. The profile of volatile compounds of cinnamon bark at different extraction temperature and extraction time were investigated by 100$\mu\textrm{m}$ PDMS fiber.

Volatile Flavor Compounds in the Leaves of Fifteen Taxa of Korean Native Chrysanthemum Species

  • Kim, Su Jeong;Ha, Tae Joung;Kim, Jongyun;Nam, Jung Hwan;Yoo, Dong Lim;Suh, Jong Taek;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.558-570
    • /
    • 2014
  • This study was conducted to compare the volatile flavor compounds found in the leaves of 15 taxa of Korean native Chrysanthemum species. The volatile flavor compounds from the taxa were collected using a simultaneous steam distillation and extraction technique and were analyzed using gas chromatography/mass selective detector (GC/MSD). A total of 45 volatile flavor compounds were identified with six functional groups: 14 alcohols, 4 ketones, 19 hydrocarbons, 5 esters, 2 acids, and 1 aldehyde. The main functional group in 15 taxa of Chrysanthemum species was alcohols, accounting for 28.7% of volatile flavor compounds, followed by ketones (21.2%) and hydrocarbons (13.2%). Camphor, which is known for its antimicrobial properties, was the most abundant volatile compound (30%) in C. zawadskii ssp. latilobum and var. leiophyllum. In particular, C. indicum subspecies and C. boreale contained ${\alpha}$-thujone, which has outstanding anti-bacterial, anti-cancer, anti-inflammatory, anti-ulcer, and anti-diabetic efficacies. C. indicum var. albescens could be used in perfumes, since it showed 21 times more camphene than C. indicum. In addition, C. indicum var. acuta contained a fairly high content of 1,8-cineole, which has an inhibitory effect on mutagenesis. C. lineare contained only pentadecanoic acid compounds, whereas other taxa hexadecanoic acids. Overall, the Korean native Chrysanthemum species had considerable variation in volatile flavor compounds in their leaves. This study provides a good indication of specific potential use for various applications.

Application of Near Infrared Reflectance Spectroscopy as a Rapid Leaf Analysis Method to Evaluate Nutritional Diagnosis in Apple (Malus Domestica Borkh, Fuji) and grape(Vitis Labrusca, Campbell Early) (영양진단을 위한 신속한 엽분석 방법으로서 근적외분광분석기의 이용)

  • Seo, Young-Jin;Park, Man;Kim, Chang-Bae;Kim, Jong-Su;Yoon, Jae-Tak;Cho, Rae-Kwang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.242-246
    • /
    • 2000
  • The Near Infrared Reflectance Spectroscopy(NIR) was used to evaluate nutritional diagnosis for rapid leaf analysis method, 177 'Fuji' apple and 130 'Campbell Early' grape leaves were measured by Near Infrared reflectance spectra in the NIR region(1,100~2.500nm). Total nitrogen content was measured by kjelldhal distillation, after salycilic acid-sulfuric acid digestion. An empirical equation to predict total nitrogen content from its spectral signature was developed by adapting the Near Infrared Reflectance Spectroscopy analysis(NIRa) technique and the results were apple-0.965(R). 0.086(SEC), grape-0.926(R), 0.152(SEC). Standard Error of Prediction(SEP) of NIRa for predicting the total nitrogen of apple and grape leaves was 0.360 and 0.210, respectively. It was concluded that Near infrared reflectance spectroscopy analysis is promising method for rapid analysis of apple and grape leaves.

  • PDF

HORIZON EXPANSION OF THERMAL-HYDRAULIC ACTIVITIES INTO HTGR SAFETY ANALYSIS INCLUDING GAS-TURBINE CYCLE AND HYDROGEN PLANT

  • No, Hee-Cheon;Yoon, Ho-Joon;Kim, Seung-Jun;Lee, Byeng-Jin;Kim, Ji-Hwang;Kim, Hyeun-Min;Lim, Hong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.875-884
    • /
    • 2009
  • We present three nuclear/hydrogen-related R&D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data.