• Title/Summary/Keyword: distance measurement sensors

Search Result 177, Processing Time 0.02 seconds

On the Design of ToA Based RSS Compensation Scheme for Distance Measurement in WSNs (ToA 기반 RSS 보정 센서노드 거리 측정 방법)

  • Han, Hyeun-Jin;Kwon, Tae-Wook
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.615-620
    • /
    • 2009
  • Nowadays, wireless infrastructures such as sensor networks are widely used in many different areas. In case of sensor networks, the wirelessly connected sensors can execute different kind of tasks in a diversity of environments, and one of the most important parameter for a successful execution of such tasks is the location information of each node. As to localization problems in WSNs, there are ToA (Timer of Arrival), RSS (Received Signal Strength), AoA (Angle of Arrival), etc. In this paper, we propose a modification of existing ToA and RSS based methods, adding a weighted average scheme to measure more precisely the distance between nodes. The comparison experiments with the traditional ToA method show that the average error value of proposed method is reduced by 0.1 cm in indoor environment ($5m{\times}7m$) and 0.6cm in outdoor environment ($10{\times}10m$).

Localization of a High-speed Mobile Robot Using Ultrasonic/RF Sensor and Global Features (RF/초음파센서와 이동특성에 기반한 고속 이동로봇의 위치추정기법)

  • Lee, Soo-Sung;Choi, Mun-Gyu;Park, Jae-Hyun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.734-741
    • /
    • 2009
  • A new localization algorithm is proposed for a fast moving mobile robot, which utilizes only one beacon and the global features of the differential-driving mobile robot. It takes a relatively long time to localize a mobile robot with active beacon sensors since the distance to the beacon is measured by the traveling time of the ultrasonic signal. When the mobile robot is moving slowly the measurement time does not yield a high error. At a higher mobile robot speed, however, the localization error becomes too large to locate the mobile robot. Therefore, in high-speed mobile robot operations, instead of using two or more active beacons for localization, only one active beacon and the global features of the mobile robot are used to localize the mobile robot in this research. The two global features are the radius and center of the rotational motion for the differential-driving mobile robot which generally describe motion of the mobile robot and are used for the trace prediction of the mobile robot. In high speed operations the localizer finds an intersection point of this predicted trace and a circle which is centered at the beacon and has the radius of the distance between the mobile robot and the beacon. This new approach resolves the large localization error caused by the high speed of the mobile robot. The performance of the new localization algorithm has been verified through the experiments with a high-speed mobile robot.

Automation of urine dipstick test by simultaneous scanning : A pilot study (요 스트립검사 자동화를 위한 동시 비교 스캔 기법 예비 연구)

  • Lee, Sang-Bong;Choi, Seong-Su;Lee, In-Kwang;Han, Jeong-Su;Kim, Wan-Seok;Kim, Wun-Jae;Cha, Eun-Jong;Kim, Kyung-Ah
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.169-175
    • /
    • 2010
  • Urinalysis is an important clinical test to diagnose urinary diseases, and dipstick method with visual inspection is widely applied in practice. Automated optical devices recently developed have disadvantages of long measurement time, big size and heavy weight, accuracy degradation with time, etc. The present study proposed a new computer scanning technique, in which the test strip and the standard chart were simultaneously scanned to remove any environmental artifacts, followed by automated differentiation with the minimum distance algorithm, leading to significant enhancement of accuracy. Experiments demonstrated an accuracy of 100 % in that all test results were identical with the human visual inspection. The present technique only uses a personal computer with scanner and shortens the test time to a great degree. The results are also stored and accumulated for later use which can be transmitted to remote locations through a network, thus could be easily integrated to any ubiquitous health care systems.

Development of a Boat Operator Computer Scoring System Based on LiDAR and WAVE (LiDAR 및 WAVE 기반 동력수상레저기구 조종면허 실기시험 전자시스템 개발)

  • Moon, Jung-Hwan;Yun, Jea-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.504-510
    • /
    • 2019
  • Practical test items were analyzed to extend the existing scoring method for boat operator licenses to an electronic scoring method. We have attempted to digitize the method within the current practical test system scope and have developed an electronic scoring system using LiDAR sensors and WAVE communication. The results of the study are as follows; the first, the scoring data entered into the LiDAR and examiner score device on the boat were transferred from an integrated processing unit to a land control center through WAVE communication. The system was constructed and verified to store and manage examinee data. Second, when testing the meandering task, accurate distance measurement was achieved by using LiDAR instead of visually observing the stick (3 m), and an accurate distance was displayed through the examiner score device quickly. Finally, we confirmed that it is possible to smoothly transmit and process the WAVE communication used to transfer the score data acquired from the boat to the monitoring center at a high speed without loss.

Application of Dielectric Sensor for Soil Moisture Measurement (토양 수분 측정을 위한 유전율식 쎈서 연구)

  • Oh, Yong-Taeg;Oh, Dong-Shig;Song, Kwan-Cheol;Shin, Jae-Sung;Im, Jung-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.85-94
    • /
    • 1998
  • Due to relatively high permittivity of water in soils, we placed the soil condenser into soils to measure the soil moisture content. The soil condenser was made with two insulated iron sticks. The capacitance of the soil condenser was determined by the pulse period from RC type oscillation circuit and the highest voltage output accepting 10MHz pulse. After zero point adjustment, the measured relative capacitance percentage (RCS) to the standard condenser obtained by the oscillation circuit almost linearly correlated with the end depth of the sensor submerged in water. The RC type oscillation was disturbed by many sensor installed in a close distance in one place, presumably resulting in that the sensor sticks played as a interfering antennas generating or accepting electron waves from them. The temperature dependance of the output from the sensors could be corrected through experimentally determined revision function. Although lineal correlation was found between soil moisture and RCS, users should derive their own correlation function for every sensor to measure soil moisture, because the outputs were influenced by the installation depth and layout in the soil. The voltage type sensor responded inversely with soil moisture content and so was not suitable to the accurate measurement of soil moisture, but allows high economic benefit in various application such as simplified measurement of soil moisture and irrigation line control because of its low component count. The voltage type moisture sensor could be reinforced by relay controlling circuit to open and to close the solenoid valves respectively at optimal limits of the least and the most soil moisture according to user's adjustment.

  • PDF

Development of Bioelectric Impedance Measurement System Using Multi-Frequency Applying Method

  • Kim, J.H.;Jang, W.Y.;Kim, S.S.;Son, J.M.;Park, G.C.;Kim, Y.J.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.368-376
    • /
    • 2014
  • In order to measure the segmental impedance of the body, a bioelectrical impedance measurement system (BIMS) using multi-frequency applying method and two-electrode method was implemented in this study. The BIMS was composed of constant current source, automatic gain control, and multi-frequency generation units. Three experiments were performed using the BIMS and a commercial impedance analyzer (CIA). First, in order to evaluate the performance of the BIMS, four RC circuits connected with a resistor and capacitor in serial and/or parallel were composed. Bioelectrical impedance (BI) was measured by applying multi-frequencies -5, 10, 50, 100, 150, 200, 300, 400, and 500 KHz - to each circuit. BI values measured by the BIMS were in good agreement with those obtained by the CIA for four RC circuits. Second, after measuring BI at each frequency by applying multi-frequency to the left and right forearm and the popliteal region of the body, BI values measured by the BIMS were compared to those acquired by the CIA. Third, when the distance between electrodes was changed to 1, 3, 5, 7, 9, 11, 13, and 15 cm, BI by the BIMS was also compared to BI from the CIA. In addition, BI of extracellular fluid (ECF) was measured at each frequency ranging from 10 to 500 KHz. BI of intracellular fluid (ICF) was calculated by subtracting BI of ECF measured at 500 kHZ from BI measured at seven frequencies ranging from 50 to 500 KHz. BI of ICF and ECF decreased as the frequency increased. BI of ICF sharply decreased at frequencies above 300 KHz.

Vehicle Classification Scheme of Two-Axle Unit Vehicle Based on the Laser Measurement of Height Profiles (차량 형상자료를 이용한 2축 차량의 차종분류 방안)

  • Oh, Ju-Sam;Jang, Kyung-Chan;Kim, Min-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.47-52
    • /
    • 2011
  • Vehicle classification data are considerably used in the almost all fields of transportation planning and engineering. Highway agencies use a large number of vehicle classification schemes. Vehicles on the national highway are classified by 12-Category classification system, using number of axles, distances between axles, vehicle length, overhang, and other factors. In the case of using existing axle-sensor-based classification counters (that is, 12-category classification system), two-axle vehicles(Class 1 to 4) can be erroneously classified because a passenger vehicle becomes larger and similar with class 3 and 4. In this reason, this study proposes the vehicle classification scheme based on using vehicle height profiles obtained by a laser sensors. Also, the accuracy of the proposed method are tested through a field study.

Corona19 Quarantine Bus Shelter with CO2 and Body Temperature Sensor (CO2 센서와 체온 센서를 이용한 코로나19 방역 버스 쉘터)

  • Park, Byeong-Yoon;Lee, Hyeon-Min;Tran, Van-Son;Nguyen, Minh-Tuan;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.981-990
    • /
    • 2021
  • Corona 19 quarantine is often not implemented at degraded bus stops. We conducted this study to improve these problems. The inside and outside of the shelter can be sterilized with UV photocatalyst coating to maintain a hygienic and clean shelter, and passengers can breathe smoothly by reducing carbon dioxide in the shelter using CO2 sensors and fans. It is also expected that the body temperature can be measured using a body temperature sensor to prevent more than 20% of the spread of the coronavirus in the shelter by isolating suspected coronavirus patients in the first place. When the temperature measurement distance was less than 10cm, the accuracy of the temperature measurement was 98.9%. You can communicate your intention to ride safely and clearly without contacting the bus driver by using a ride bell that uses wireless communication inside the shelter.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.