• Title/Summary/Keyword: distance between nodes

Search Result 279, Processing Time 0.026 seconds

Improving Accuracy and Completeness in the Collaborative Staging System for Stomach Cancer in South Korea

  • Lim, Hyun-Sook;Won, Young-Joo;Boo, Yoo-Kyung
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9529-9534
    • /
    • 2014
  • Background: Cancer staging enables planning for the best treatments, evaluation of prognosis, and predictions for survival. The Collaborative Stage (CS) system makes it possible to significantly reduce the proportion of patients labeled at an "unknown" stage as well as discrepancies among different staging systems. This study aims to analyze the factors that influence the accuracy and validity of CS data. Materials and Methods: Data were randomly selected (233 cases) from stomach cancer cases enrolled for CS survey at the Korea Central Cancer Registry. Two questionnaires were used to assess CS values for each case and to review the cancer registration environment for each hospital. Data were analyzed in terms of the relationships between the time spent for acquisition and registration of CS information, environments relating to cancer registration in the hospitals, and document sources of CS information for each item. Results: The time for extracting and registering data was found to be shorter when the hospitals had prior experience gained from participating in a CS pilot study and when they were equipped with full-time cancer registrars. Evaluation of the CS information according to medical record sources found that the percentage of items missing for Site Specific Factor (SSF) was 30% higher than for other CS variables. Errors in CS coding were found in variables such as "CS Extension," "CS Lymph Nodes," "CS Metastasis at Diagnosis," and "SSF25 Involvement of Cardia and Distance from Esophagogastric Junction (EGJ)." Conclusions: To build CS system data that are reliable for cancer registration and clinical research, the following components are required: 1) training programs for medical records administrators; 2) supporting materials to promote active participation; and 3) format development to improve registration validity.

A Range-based Relay Node Selecting Algorithm for Vehicular Ad-hoc Network (차량 애드혹 네트워크를 위한 영역 기반 릴레이 노드 선택 알고리즘)

  • Kim Tae-Hwan;Kim Hie-Cheol;Hong Won-Kee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.88-98
    • /
    • 2006
  • VANET has several different characteristics from MANET such as high mobility of nodes and frequent change of node density and network topology. Due to these characteristics, the network topology based protocol, often used in MANET, can not be applied to VANET. In this paper, we propose an emergency warning message broadcast protocol using range based relay node selecting algorithm which determines the minimal waiting time spent by a given node before rebroadcasting the received warning message. Because the time is randomly calculated based on the distance between sender node and receiver node, a node chosen as a relay node is assured to have a minimal waiting time, even though it is not located at the border of radio transmission range. The proposed emergency warning message broadcast protocol has low network traffic because it does not need to exchange control messages for message broadcasting. In addition, it can reduce End-to-End delay under circumstances of low node density and short transmission range in VANET.

An Adaptive Analysis in the Element-free Galerkin Method Using Bubble Meshing Technique (Bubble Mesh기법을 이용한 적응적 EFG해석)

  • 정흥진;이계희;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2002
  • In this study an adaptive node generation procedure in the Element-free Galerkin (EFG) method using bubble-meshing technique is Proposed. Since we construct the initial configuration of nodes by subdivision of background cell, abrupt changes of inter-nodal distance between higher and lower error regions are unavoidable. This unpreferable nodal spacing induces additional errors. To obtain the smooth nodal configuration the nodal configurations are regenerated by bubble-meshing technique. This bubble meshing technique was originally developed to generate a set of well-shaped triangles and tetrahedra. In odder to evaluate the effect of abrupt changes of nodal spacing, one-dimensional problems with various nodal configurations mere investigated. To demonstrate the performance of proposed scheme, the sequences of making optimal nodal configuration with bubble meshing technique are investigated for several problems.

Environment Adaptive WBAN Routing based on Residual energy (에너지량에 기반한 환경 적응 WBAN 라우팅 알고리즘)

  • Kim, Wee-Yeon;Kim, Dae-Young;Shin, Sang-Bae;Cho, Jin-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.89-99
    • /
    • 2011
  • In this paper, we propose an routing algorithm for ultra low power and high reliable transmission in WBAN environment. This algorithm is to minimize energy consumption and to maximize the life and reliability for medical devices. Also, this algorithm is not only medical devices but also non-medical devices is to minimize energy consumption and to maximize the life of device. The combination of the distance from the previous node and residual energy calculates weight. The calculated weight is used to calculate the weight of full path by cumulative weights. The full path to the smallest of the weights are set to the path. Also this algorithm is able to select another path to avoid the error path by determining the link status between nodes, when occurs link error and congestion. In this paper, we show that WSN routing algorithm based on shortest hop count routing algorithm and EAR routing algorithm compared to ensure high reliability and low power characteristic of WBAN to be verified through simulations.

Development of a Shortest Path Searching Algorithm Using Minimum Expected Weights (최소 기대 부하량을 이용한 최단경로 탐색 알고리즘 개발)

  • Ryu, Yeong-Geun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2013
  • This paper developed a new shortest path searching algorithm based on Dijkstra's algorithm and $A^*$ algorithm, so it guarantees to find a shortest path in efficient manner. In this developed algorithm, minimum expected weights implies the value that straight line distance from a visiting node to the target node multiplied by minimum link unit, and this value can be the lowest weights between the two nodes. In behalf of the minimum expected weights, at each traversal step, developed algorithm in this paper is able to decide visiting a new node or retreating to the previously visited node, and results are guaranteed. Newly developed algorithm was tested in a real traffic network and found that the searching time of the algorithm was not as fast as other $A^*$ algorithms, however, it perfectly found a minimum path in any case. Therefore, this developed algorithm will be effective for the domain of searching in a large network such as RGV which operates in wide area.

Multi-Agent for Traffic Simulation with Vehicle Dynamic Model I : Development of Traffic Environment (차량 동역학을 이용한 멀티에이전트 기반 교통시뮬레이션 개발 I : 교통 환경 개발)

  • 조기용;권성진;배철호;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.125-135
    • /
    • 2004
  • The validity of simulation has been well-established for decades in areas such as computer and communication system. Recently, the technique has become entrenched in specific areas such as transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and their driver's characteristics, even though it is known that they are important factors for any traffic flow analysis, have never been considered sufficiently. In this paper, the traffic simulation using a multi-agent approach with considering vehicle dynamics is proposed. The multi-agent system is constructed with the traffic environment and the agents of vehicle and driver. The traffic environment consists of multi-lane roads, nodes, virtual lanes, and signals. To ensure the fast calculation, the agents are performed on the based of the rules to regulate their behaviors. The communication frameworks are proposed for the agents to share the information of vehicles' velocity and position. The model of a driver agent which controls a vehicle agent is described in the companion paper. The vehicle model contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation has proceeded for an interrupted and uninterrupted flow model. The result has shown that the driver agent performs human-like behavior ranging from slow and careful to fast and aggressive driving behavior, and that the change of the traffic state is closely related with the distance and the signal delay between intersections. The system developed shows the effectiveness and the practical usefulness of the traffic simulation.

A Study on the Applications of a Geographic Information Systems To A Transportation Planning Model (교통모형에서의 지리정보시스템 활용방안에 관한 연구)

  • Kim, Dae-Ho;Park, Jin-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.167-175
    • /
    • 1993
  • This article contains three objectives. First it is to revise unnecessary procedures of a transportation models and transform results of a model into an image. Second objectives is to develop an operational structures which automatically input all data needed from arc-node topology to link-node topology of transportation network. By solving the network discrepancy, time and money for constructing to transportation can be saved. In addition, the rate of errors that my caused during data input process can be reduced. Conclusively, it is found that the integration package may provide user friendliness and reduce the rate of errors. The package can extract informations such as distance between zones and nodes, lane numbers, and hierarchy from arc-node topology for executing SDI. Another advantage of integration is the ability of spatial analysis. The integrated package may provide adequate arrangements of traffic facilities and checking systems of the shortest path. Finally, the database function of GIS package provides various information about study area for transportation analysis.

  • PDF

A Algorithm-Based Practical Path Planning Considering the Actual Dynamic Behavioural Constraint in Unmanned Underwater Vehicles (무인잠수정의 실제 동역학적 제한을 고려한 A* 알고리즘 기반 현실적 경로계획)

  • Lee, Jaejun;Moon, Ji Hyun;Lee, Ho Jae;Kim, Moon Hwan;Park, Ho Gyu;Kim, Tae Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.170-178
    • /
    • 2017
  • This paper proposes an improved path-planning technique based on the $A^*$ algorithm. The conventional $A^*$ algorithm only considers the optimality of the planned path and sometimes produces a path that an unmanned underwater vehicle (UUV) cannot navigate due to its dynamic constraint such as the limit of the radius of gyration. It is because that the previous method evaluate the moving cost based on the straight distance between nodes. We enhance the conventional method by evaluating the moving cost on the basis of the practically navigable trajectory, which is generated by the waypoint-tracking control of the UUV dynamics. The simulation examples indeed show the effectiveness of the proposed technique.

Efficient Quantizer Design Algorithm for Sequence-Based Localization (SBL) Systems (시퀀스 기반 위치추정 시스템을 위한 효율적인 양자기 설계 알고리즘)

  • Park, Hyun Hong;Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • In this paper, we consider an efficient design of quantizers at sensor nodes for sequence-based localization (SBL) systems which recently show a competitive performance for in-door positioning, Since SBL systems locate targets by partitioning the sensor field into subregions, each with an unique sequence number, we use the distance samples between sensors and the sequences for quantizer design in order to propose a low weight design process. Furthermore, we present a new cost function devised to assign the number of samples and the number of unique sequences uniformly into each of quantization partitions and design quantizers by searching the quantization partitions and codewords that minimize the cost function. We finally conduct experiments to demonstrate that the proposed algorithm offers an outstanding localization performance over typical designs while maintaining a substantial reduction of design complexity.

Reliable Routing Protocol for Vehicle to Infrastructure Communications in VANET (차량 네트워크에서 V21 통신을 위한 안정된 라우팅 프로토콜)

  • Kim, Jung-Hun;Lee, Su-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8B
    • /
    • pp.839-845
    • /
    • 2009
  • The Vehicular Ad-hoc Network (VANET) has two main problems to be overcome due to high mobility and frequently changing density: one is short link duration time and the other is high packet loss ratio. To solve the problems, there have been many studies to predict vehicular mobility. Most of the studies try to enhance link expire time and link reliability, however the distance between two relay nodes becomes too short to have high network throughput. In this paper, we propose a new routing algorithm that considers both link expire time and network throughput in the VANET. The proposed algorithm aims to find path with long link expire time and high throughput. Our simulation results show that the proposed algorithm outperforms the legacy greedy algorithm and its variants.