• Title/Summary/Keyword: dissolution temperature

Search Result 415, Processing Time 0.025 seconds

Effect of Peak Temperature on the Grain Growth in Simulated HAZ of Cr-Mo-V Steel(T24) (Cr-Mo-V강(T24)의 재현 HAZ의 결정립 성장에 미치는 피크온도의 영향)

  • Lee, Kyong-woon;Lee, Seong-hyeong;Na, Hye-sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.55-61
    • /
    • 2016
  • Recently developed ferritic heat resistance steel, T24 was used to evaluate microstructure characteristics of simulated heat affected zone. Also, correlation between the prior austenite grain size and amount of $M_{23}C_6$ carbide dissolution was discussed. With the increasing of peak temperature, Grain size steadily increased up to $1050^{\circ}C$ and then rapidly increased at $1150^{\circ}C$. Of the peak temperature $950{\sim}1050^{\circ}C$, amounts of $M_{23}C_6$carbide dissolution are low. But Most of $M_{23}C_6$ carbide that is inhibited grain growth were dissolved above $1050^{\circ}C$ and decreased volume fraction of carbide. This indicates that grain growth may be achieved through dissolution of carbide in the base material. As of welding, due to very rapid heating rate, $M_{23}C_6$ carbide exists above equilibrium solution temperature that is $800^{\circ}C$, even at $1050^{\circ}C$. So, It was confirmed that close correlation between carbide dissolution in the base material and grain growth. Calculated grain size has a linear relationship with peak temperature, on the other hand, measured grain size discontinuously increased between $950{\sim}1050^{\circ}C$ and above $1050^{\circ}C$. Grain size of heat affected zone at $1350^{\circ}C$ peak temperature showed maximum 67um and minimum 4um. Also, The number of side showed 3 to 10.

Identification of College Students' Understanding of the Thermodynamic Aspects Regarding the Dissolution of Solids and Gases (고체와 기체의 용해에 대한 대학생들의 열역학적 이해 조사)

  • Park, Jong-Yoon;Lee, Yun-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.186-196
    • /
    • 2008
  • purpose of this study was to investigate college students' understanding of the thermodynamic aspects of the dissolution of solids and gases. The subjects were 34 juniors from the Seoul area who answered questionnaires composed of six items which asked the directions and reasons for the changes in enthalpy, entropy, and the solubility by temperature for the dissolution of solid sodium chloride and gaseous carbon dioxide into water. The results showed that the students understanding of the enthalpy change of dissolution was poor: many students answered that the dissolution of solids is an exothermic process because the dissolution occurs when the solute-solvent interaction is greater than the solute-solute interaction; the students also thought that the enthalpy should be reduced for spontaneous dissolution because the spontaneity depends on the enthalpy change only. For the entropy change, the students understanding was better and they explained it according to the meaning of disorder. For the temperature dependence of solubility, most students answered correctly regarding the direction, but only 25% of them explained the reason accounting for the enthalpy change. Many students who answered incorrectly on the enthalpy change could not explain the reason why.

Dissolution Behavior of Complex Carbonitrides in a Microalloyed Steel (Microalloyed 강에서 복합 탄질화물의 재용해 거동)

  • Jung, Jae-Gil;Park, June-Soo;Ha, Yang-Soo;Lee, Young-Kook;Bae, Jin-Ho;Kim, Kisoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.287-292
    • /
    • 2008
  • Dissolution behavior of complex carbonitrides in a Nb-Ti-V microalloyed steel was quantitatively examined by electrical resistivity, transmission electron microscopy (TEM), and optical microscopy. The electrical resistivity increased with solution treatment temperature up to $1250^{\circ}C$ for a holding time of 15 min. But, an increasing rate of electrical resistivity with temperature was obviously decreased above $1150^{\circ}C$. As the solution treatment temperature increases, irregular shaped Nb-rich carbonitrides disappear and cuboidal Ti-rich carbonitrides are observed. Abnormal grain growth occurs above $1250^{\circ}C$ for a holding time of 15 min. The optimal solution treatment temperature of a Nb-Ti-V microalloyed steel was determined as $1200^{\circ}C$ for a holding time of 15 min.

A clean technology development using the iron(Fe) dissolution reaction with hydrogen peroxide (과산화수소를 이용한 철(Fe)선 용해반응에 따른 청정기술 개발에 관한 연구)

  • 김재우
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.62-68
    • /
    • 2001
  • The advantages of hydrogen peroxide dissolution method were no discharge of noxious matter when dissolution of iron wire which used as the center supporter, reactions occur in room temperature and easy to recover dissolved iron. This study was aimed at gathering the basic data of iron wire dissolution- recovery process and proposes the reaction condition of iron wire dissolution- recovery process rind the factors influencing those reactions. The results were as follows : 1 . Hydrogen peroxide dissolution method used hydrochloric acid as the catalyst. 1. In the dissolution of iron wire(1.668 g), the condition of reaction was E1702(30 ml), HCI(20 ml) and $H_2O$(200 ml) ; time of the reaction was 18 min. P.W.(Piece weight) was 7.75 mg, and C.R. was $2.34{\;}{\Omega}$ 2. In the dissolution of iron wire(1.529 g), the condition of reaction was H7O2(30 ml), HCI(20 ml) and $H_2O$(200 ml), time of the reaction was 21 min., P.W.(Piece weight) was 7.73 mg, and C.R. was $2.35{\;}{\Omega}$. Hydrogen peroxide dissolution method used sulfuric acid as the catalyst. 1. In the dissolution of iron wire(0.834 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and 1702(5 ml) ; time of the reaction was 5 min.30 sec, P.W.(Piece weight) was 7.74 mg, and C.R. was $2.33{\;}{\Omega}$ 2. In the dissolution of iron wire(1.112 g), the condition of reaction was $H_2O$(65 ml), $H_2SO_4$(5 ml) and $H_2O_2$(5 ml) ; time of the reaction was 4 min.30 sec, P.W.(Piece weight) was 7.75 mg, and C.R. was $2.33{\;}{\Omega}$. Hydrogen peroxide dissolution method used hydrochloric acid and sulfuric acid as the catalyst confirmed a clean technology, because there were not occurred a pollutant discharged in the existing method.

  • PDF

Elastic Moduli and Dissolution Rates of Resorbable Na2O-MgO-P2O5 Bioglasses (Na2O-MgO-P2O5 생체 유리의 탄성계수와 용해도)

  • ;T.D.Taylor
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.850-854
    • /
    • 1989
  • The elastic moduli and dissolution rates of 15 glasses with different mole ratios of sodium-magnasium-phosphate as potential non-toxic biomaterials were investigated. In this study, a 3-pint bending test, sonic resonance technique, and theoretical calculation were used to evaluate the modulus of elasticity. The dissolution rates at 37$^{\circ}C$(human body temperature) were determined by the measurement of mass changes in each sample for 24 weeks.

  • PDF

Homogenization Analysis of Problems related to Quartz Dissolution and Hydroxide Diffusion (석영광물의 용해 및 수산화 이온의 확산에 관한 균질화해석)

  • Choi, Jung-Hae;Ichikawa, Yasuaki
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.271-279
    • /
    • 2010
  • Time-dependent behavior similar to secondary deformation related to mineral dissolution is easily observed when performing a laboratory pressure experiment. In this research, to observe the dissolution of quartz found in bentonite used as buffer material for the geological disposal of high-level waste (HLW) under conditions of high pH, we calculated the diffusion of $OH^-$ ions and the behavior of quartz dissolution using the homogenization analysis method. The results reveal that the rate of quartz dissolution is proportional to the temperature and interlayer water thickness. In particular, in a high-pH environment, the reacted area (and therefore the dissolution rate) increases with decreasing interlayer water thickness.

Carbide Precipitation Behavior During Normalizing Heat Treatment in Low-alloyed Cr-Mo-V-Ti Steel (Cr-Mo-V-Ti 저합금강에서 노멀라이징 열처리조건에 따른 석출물의 거동)

  • Kim, Hong-Ki;Na, Hye-Sung;Lee, Sang-Hoon;Kang, Chung-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2017
  • Heat treatment condition for dissolution of the M23C6 carbides in 2.25Cr-1Mo-V-Ti material for thermal power plant tube was investigated using a dilatometer method. 2.25Cr-1Mo-V-Ti material was heat-treated at $900{\sim}1,100^{\circ}C$ for 0, 10, 30 min to find the proper dissolution condition of M23C6 carbides. The phase identification and volume fraction of the carbide were measured by using OM, SEM, EBSD and TEM analysis. Optimal heat treatment condition of M23C6 carbide dissolution was selected by predicting dissolution temperature of carbide using Bs points appeared at dilatometer curve. Experimental results showed that the conditions of carbide dissolution was 900, 1,000, $1,100^{\circ}C$ for 30 min. Eventually, the optimal heat treatment condition for dissolution was 30 min at $1,000^{\circ}C$ considering the minimum coarsening of Austenite grain size.

A Study on the Dissolution of Aluminum Hydroxide with Mineral and Organic Acid (Aluminum Hydroxide의 유무기산(有無機酸)에 의한 용해특성(溶解特性) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.56-61
    • /
    • 2009
  • The dissolution of domestic aluminum hydroxide of 99.7% purity has been performed with mineral and organic acid prior to the synthesis of aluminum compounds from aluminum solution. Mean particle size of aluminum hydroxide used in the work was $14.4{\mu}m$, $22.9{\mu}m$ and $62.3{\mu}m$, respectively and the effect of reaction temperature, concentration of acid and reaction time on the dissolution of aluminum hydroxide has been examined. As a result, the dissolution of aluminum hydroxide was increased with the concentration of HCl and more than 70% dissolution was obtained with 5 mole/l HCl at $70^{\circ}C$ for reaction time of 4 hr. As far as the dissolution of aluminum hydroxide with sulfuric acid was concerned, it was found that the optimum concentration of sulfuric acid was about 6 mole/l for the effective dissolution of aluminum hydroxide. When oxalic acid was used for the dissolution of aluminum hydroxide, nearly complete dissolution could be obtained by the dissolution for 16 hr with 1.0 mole/l oxalic acid at $90^{\circ}C$.

Dissolution Phenomenon of the Base Metal during TLP Bonding Using the Modified Base Metal Powder and Ni Base Filler Metal Powder (유사 조성의 모재분말과 Ni기 삽입금속 혼합분말을 사용한 천이액상확산 접합 시 모재의 용해현상)

  • Song, Woo-Young;Ye, Chang-Ho;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.64-71
    • /
    • 2007
  • The dissolution phenomenon of the solid phase powder and base metal by liquid phase insert metal during Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111(base metal) powder and the GNi3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder was investigated. In case of the mixed powder contains modified GTD111 powder 50wt%, all of the powder was melted by liquid phase at 1423K. At the temperature between solidus and liquidus of GNi3, liquid phase penetrated into the boundary of the modified GTD111 powder and solid particle separated from powder was melted easily because area of reaction was increased. With increasing mixing ratio of the modified GTD111, it needed the higher temperature to melt all of the modified GTD111 powder. During Transient Liquid Phase bonding using the mixed powder composed of the modified GTD111 50wt% and GNi3 50wt% as insert metal, width of the bonded interlayer was increased with increasing bonding temperature by reaction of the base metal and liquid phase in insert metal. Dissolution of the base metal and modified powder by liquid phase progressed all together and after all of the powder was melted nearly, the dissolution of the base metal occurred quickly.

Structural, Optical, and Chemical Properties of Cadmium Phosphate Glasses

  • Chung, Jae-Yeop;Kim, Jong-Hwan;Choi, Su-Yeon;Park, Hyun-Joon;Hwang, Moon-Kyung;Jeong, Yoon-Ki;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.128-132
    • /
    • 2015
  • In this study, we prepared cadmium phosphate glasses with various compositions, given by $xCdO-(100-x)P_2O_5$ (x = 10-55 mol%), and analyzed their Fourier transform infrared spectra, dissolution rate, thermal expansion coefficient, glass transition temperature, glass softening temperature, and optical band gap. We found that the thermal expansion coefficient and dissolution rate increased while the glass transition temperature and glass softening temperature decreased with increasing CdO content. These results suggest that CdO acts as a network modifier in binary phosphate glass and weakens its structure.