• Title/Summary/Keyword: dissolution properties

Search Result 385, Processing Time 0.029 seconds

Electrodeposition of Some Selective Metals Belonging to Light, Refractory and Noble Metals from Ionic Liquid Electrolytes

  • Dilasari, Bonita;Kwon, Kyung-Jung;Lee, Churl-Kyoung;Kim, Han-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.135-148
    • /
    • 2012
  • Ionic liquids are steadily attracting interests throughout a recent decade and their application is expanding into various fields including electrochemistry due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, wide electrochemical potential window and so on. These features make ionic liquids become an alternative solution for electrodeposition of metals that cannot be electroplated in aqueous electrolytes. In this review, we classify investigated metals into three categories, which are light (Li, Mg), refractory (Ti, Ta) and noble (Pd, Pt, Au) metals, rather than covering the exhaustive list of metals and try to update the recent development in this area. In electrodeposition of light metals, granular fine Li particles were successfully obtained while the passivation of electrodeposited Mg layers is an obstacle to reversible deposition-dissolution process of Mg. In the case of refractory metals, the quality of Ta and Ti deposit particles was effectively improved with addition of LiF and pyrrole, respectively. In noble metal category, EMIM TFSA ionic liquid as an electrolyte for Au electrodeposition was proven to be effective and BMP TFSA ionic liquid developed a smooth Pd deposit. Pt nanoparticle production from ionic liquid droplet in aqueous solution can be cost-effective and display an excellent electrocatalytic activity.

The Characteristics of Soil Organic Matter

  • You Sun-Jae;Kim Jong-gu;Cho Eun-Il
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The purpose of this study is to illustrate the characteristics of soil organic matter (SOM) and partition coefficient $(K_{DOC})$. Humic substances (HS) from eight soils of varying properties were extracted by two different methods. The dissolved organic carbon (DOC) concentration was stabilized in 22hrs. The ratio of UV absorbance at 465nm and 665nm (E4/E6 ratio) for HS were similar pattern for 8 soils. The extraction with increasing pH increased dissolution of SON. The ratio of organic carbon (OC) associated with HA and FA (the HA:FA ratio) was varied widely in accordance with the soils and was highly correlated to OC $content(\%)$ of the soils. in modeling metal speciation in soils and soil solutions, assumptions that all DOC in soil solution is associated with FA and that HA:FA ratio in SOM is constant have been made. The results of this study indicate that the validity of these assumptions is questionable. By sequential pH extraction, the $K_{DOC}$ showed in a linear correlation with pH.

Study on Erosion Characteristics of Aged HK40 Steel (열화된 HK40강의 마식특성에 관한 연구)

  • Kim, Am-Kee;Chun, Yong-Du;Lee, Kum-Bae;Kim, Chang-Hoon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.403-408
    • /
    • 2003
  • The erosion behavior of :artificially aged HK40 steel was investigated. Erosion tests were conducted at room temperature, $200^{\circ}C$ and $400^{\circ}C$ using $Al_2O_3$ particles. Erosion rates increased with increment of temperature. The maximum erosion rate increased with the impingement angle of 30 degree. The erosion rate increased, reached the maximum at 1000 hours, and after that, decreased with heat treatment time. The mechanism of erosion seems to be the cutting wear which is very much associated with the strength of material. As results, the erosion rates were rather affected by the tensile strength and the strain hardening coefficient than the hardness and the yield strength. Such changes of material properties would be caused by the change of micro-structure due to the precipitation of carbide and the dissolution of solid element within matrix during the heat treatment.

  • PDF

The Development of Slag Based Materials for the Reformation of Soft Ground

  • Byeon, Tae-Bong;Kim, Hyung-Suek;Han, Ki-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.537-541
    • /
    • 2001
  • For the development of reformation material of soft ground using the LD slag, the relation to the particle condition of LD slag and the pH behavior of slag dissolution water, extraction properties of slag, and origination of white water were investigated. When the LD slag is mixed with sea water, the pH of solution ranged between 9.47 and 10.0. On the other hand, when mixed with distilled water, the pH was about 10.4 to 12.1. For the as-received slag and the aged slag in sea water, a pH of 11.5 to 12.0 was observed when the particle size was less than 0.5mm. For the reoxidized slag in seawater, the pH of the solution was lower than 9.5 when the particle size was bigger than 0.075mm. For the aged slag and reoxidized slag, the pH of the solution remained constant when the addition ratio of sea water to the slag was higher than 500 times. The main elements dissolved from the slag were Ca and Mg ions. When the pH went over 9.0, the white water started to font which was caused by the CaCO$_3$and Mg(OH)$_2$.

  • PDF

Decontaminatin Techniques using Liquid/Supercritical $CO_2$ (액체 및 초임계 이산화탄소를 이용한 제염법)

  • 박광헌;김홍두;김학원;고문성;윤청현
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.650-654
    • /
    • 2003
  • A major problem of nuclear energy is the production of radioactive wastes. Needs for more environmentally favorable method to decontaminate radioactive contaminants make the use of liqui $d^ercritical $CO_2$ as a solvent medium. In removing radioactive metallic contaminants under $CO_2$ solvent, two methods - use of chelating ligands and that of water in $CO_2$ emulsion-are possible. In the chelating ligand method, a combination of ligands that can make synergistic effects seems important. We discuss about the properties of microemulsion formed by F-AOT and that by non-ionic surfactant. By adding acid in water core, decontamination of metallic parts, soils were possible. The rate of metal surface dissolution to the microemulsion solution was measured by QCM. The possibility of recovering the surfactants after use is also mentioned.ed.

  • PDF

Effect of Austenitizing Temperature on Mechanical Properties in the Spheroidized Cr-Mo Steel (구상화 열처리한 Cr-Mo강의 오스테나이트화 온도가 기계적 성질에 미치는 영향)

  • Kou, D.H.;Yoon, J.H.;Park, S.J.;Kim, J.M.;Kang, H.J.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Effect of austenitizing temperatures on the impact value of the AISI 4140 steel after repetition of spheroidization and cold deep drawing treatment has been studied. Sufficient dissolution of carbide was shown after austenitizing at the high temperature of $950^{\circ}C$. Accordingly, the impact value was remarkably increased by tempering of this high temperature austenitized steel at the tempering temperature ranges between $570^{\circ}C$ and $630^{\circ}C$. On the other hand, remarkable decrease in the impact values and elongations were shown by tempering the low temperature-austenitized ($870^{\circ}C$) steel due to the coarsening of undissolved-carbide existed at the austenitizing temperature.

Effect of corrosion environment on the SCC of Al-brass tube for vessel (선박용 Al-황동세관의 SCC에 미치는 부식환경의 영향)

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • Al-brass is usually used as the tube material of vessel's heat exchanger for seawater cooling system because it has high thermal conductivity and good mechanical properties and high corrosion resistance due to cuprous oxide (Cu20) layer against seawater. However, Al-brass tubes of heat exchanger for vessel at the actual environment is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment In this paper, the effect of corrosion environment on the stress corrosion cracking of Al-brass in various NH4OH of 3.5% NaCl solution, under flow by constant displacement tester. Based on the test results, the behavior of polarization, stress corrosion crack propagation and dezincification phenomenon of Al-brass are investigated. The main results are as follows:(1) Increasing range of potential from open circuit potential to repassivation gets lower, as the contain rate of NH4OH gets higher. (2) As contain rate of NH4OH gets higher, SCC of Al-brass is become activation but the protection film(Cu20) of Al-brass is created in 3.5% NaCl solution. (3) According as content of NH4OH increases in 3.5% NaCl solution, the dezincifiction area is spread. It is concluded that dezincification occurred by localized preferential anodic dissolution at stress focusing region.

Application of Neural Networks in Aluminum Corrosion

  • Powers, John;Ali, M. Masoom
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.157-172
    • /
    • 2000
  • Metal containers represent a situation where a specific metal is exposed to a wide variety of electrolytes of varying degrees of corrosivity. For example, hundreds, if not thousands of different products are packaged in an aluminum beverage can. These products vary in pH, chloride concentration and other natural or artificial ingredients which can effect the type and severity of potential corrosion. Both localized (perforation) and uniform corrosion (metal dissolution without the onset of pitting) may occur in the can. A quick test or series of tests which could predict the propensity towards both types of corrosion would be useful to the manufacturer. Electrochemical noise data is used to detect the onset and continuation of pitting corrosion. Specific noise parameters such as the noise resistance (the potential noise divided by the current noise) have been used to both detect pitting corrosion and also to estimate the pitting severity. The utility of noise resistance and other electrochemical parameters has been explored through the application of artificial neural networks. The versatility of artificial neural networks is further demonstrated by combing electrochemical data with electrolyte properties such as pH and chloride concentration to predict both the severity of both localized and uniform corrosion.

  • PDF

Evaluation of Embrittlement in Isochronal Aged Fe-Cr Alloys by Magnetic Hysteresis Loop Technique

  • Mohapatra, J.N.;Kamada, Y.;Kikuchi, H.;Kobayashi, S.;Echigoya, J.;Park, D.G.;Cheong, Y.M.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.173-176
    • /
    • 2011
  • Fe-Cr alloys with different Cr contents were prepared by an arc melting technique. The alloys were isochronally aged in the range from $400^{\circ}C$ to $900^{\circ}C$ with $50^{\circ}C$ steps with a holding time of 100 hours. The ageing produced embrittlement in the alloys due to either the formation of a Cr-rich ${\alpha}'$ phase or a $\sigma$ phase at high temperatures. Magnetic Hysteresis Loop (MHL) and Micro-Vickers hardness were measured at each step to correlate the magnetic and mechanical properties. Coercivity and hardness of the alloys were increased and remanence decreased up to 500-$550^{\circ}C$ due to formation of a Cr-rich ${\alpha}'$ phase. Beyond 500-$550^{\circ}C$ range, the coercivity and hardness decreased and remanence increased due to the coarsening or dissolution of the Cr-rich ${\alpha}'$ phase. In the Fe-48% Cr alloy, formation of the $\sigma$ phase at $700^{\circ}C$ reduced the maximum induction of the alloy significantly.

Characteristics of GMR-SV Sensor for Measurement of Mineral Contents in Edible Water

  • Kim, Da-Woon;Lee, Ju-Hee;Kim, Min-Ji;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.80-85
    • /
    • 2009
  • The mineral dissolution sensor system using GMR-SV and glass/Mg(200 nm) was prepared and characterized. The magnetic field sensitivity of GMR-SV to microscopic magnetic variation was about 0.8%/Oe. The change that occurs when Mg-film dissolves in water, the solubility of water, which is one of the basic properties of mineral water, was sensed by measuring the subtle variation of an electric current. In the case of edible water with Mg mineral added, bubbles were generated on the surface of the Mg film in the first 45 minutes, and the number of drops that were dissolved more rapidly than with the tap and DI waters later reduced to zero. For the edible water samples that each had different mineral Mg concentrations, the Mg solubility speed significantly differed. After injecting Mg film into the edible water, the magnetoresistance of the output GMR-SV signal decreased from a maximum of $45.4\;{\Omega}$ to a minimum of $43.6\;{\Omega}$. The measurement time was within 1 min, giving the rate of change ${\Delta}R/{\Delta}t=0.18\;{\Omega}/s$. This measurement system can be applied to develop a mineral Mg solubility GMR-SV sensor that can be used to sense the change from edible water to reduced alkali.