• Title/Summary/Keyword: dissociation of gas hydrate

Search Result 36, Processing Time 0.027 seconds

A Preliminary Study on Submarine Slope Failure of Gas Hydrate-bering Sediments (가스 하이드레이트가 매장된 해저사면의 붕괴에 관한 기초적 연구)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.399-404
    • /
    • 2008
  • The influence of gas hydrate dissociation on submarine slope stability was studied in this paper. Gas hydrates are stable under high pressure and low temperature conditions. Once gas hydrate dissociates due to natural or human activities, it generates large amount of gas and water. During gas hydrate dissociation, a pore pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness. A pore pressures model was proposed to calculated excess pore pressures generated by gas hydrate dissociation at the Storegga Slide. A slope stability analysis for the Storegga Slide using a two dimensional finite difference method was carried out by considering excess pore pressures due to gas hydrate dissociation. Since the excess pore pressure calculated by the proposed method resulted in the considerable loss of stiffness and strength in slope, a submarine slope failure occurred at the Storegga slide was well simulated.

  • PDF

Excess Pore Water Pressure Calculation Methods due to Gas Hydrate Dissociation (가스 하이드레이트의 해리로 발생하는 간극수압의 계산방법)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.888-892
    • /
    • 2008
  • If gas hydrate dissociates due to natural and/or human activities, it generates large amount of gas and water. Upon gas hydrate dissociation, a generated pore water pressure between soil particles increases and results in the loss of an effective stress and degradation of soil stiffness and strength. In order to predict the generated excess pore water pressure due to gas hydrate dissociation, two methods based on small hydrate concept (SHC) and large hydrate concept (LHC) are proposed. An excess pore water pressure generated by the gas hydrate dissociation in the Storegga Slide was calculated using two proposed methods.

  • PDF

Formation and Dissociation Processes of Gas Hydrate Composed of Methane and Carbon Dioxide below Freezing

  • Hachikubo, Akihiro;Yamada, Koutarou;Miura, Taku;Hyakutake, Kinji;Abe, Kiyoshi;Shoji, Hitoshi
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.515-521
    • /
    • 2004
  • The processes of formation and dissociation of gas hydrates were investigated by monitoring pressure and temperature variations in a pressure cell in order to understand the kinetic behavior of gas hydrate and the controlling factors fur the phase transition of gas hydrate below freezing. Gas hydrates were made kom guest gases ($CH_4,\;CO_2$, and their mixed-gas) and fine ice powder. We found that formation and dissociation speeds of gas hydrates were not controlled by temperature and pressure conditions alone. The results of this study suggested that pressure levels at the formation of mixed-gas hydrate determine the transient equilibrium pressure itself.

Investigation on the Self-preservation Effect of Natural Gas Hydrates (천연가스 하이드레이트의 자기보존 효과 연구)

  • Lee, Jong-Won;Lee, Ju Dong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.123.2-123.2
    • /
    • 2011
  • Self-preservation effect was identified by means of macroscopic dissociation experiments after keeping natural gas hydrate samples at 258 K for 15 days. The hydrate samples were formed using synthetic natural gas hydrate whose compositions are 90% $CH_4$, 7% $C_2H_6$, and 3% $C_3H_8$. In addition, during the formation, heavy hydrocarbons of propane and ethane are found to occupy hydrate cages in a more favorable way than methane so as to change the gas composition after hydrate formation. Experimental results obtained in this study can provide useful information on applications of natural gas hydrate for storing or transporting natural gas in the form of solid hydrate.

  • PDF

Experimental Study on the Dissociation Characteristics of Methane Hydrate Pellet by Hot Water Injection (열수 주입법에 의한 메탄가스 하이드레이트 펠릿의 해리 특성에 관한 실험 연구)

  • Lee, Seung-Han;Yoon, Yong-Seok;Seong, Kwan-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1177-1184
    • /
    • 2011
  • Gas-to-Solid (GTS) technology is composed of three stages: hydrate production, transportation, and regasification. For efficient operation of regasification plants, it is crucial to predict the temperature and flow rate of hot water necessary to dissociate the hydrate pellets. Dissociated gas escaping from the pellet surface, when in contact with hot water, will alter the flow field and consequently alter the heat transfer rate. Methane hydrate pellet dissociation characteristics in low- to moderatetemperature water were investigated by taking images of the changes in the hydrate pellets' shapes in a pressurized reactor and measuring the total time required for complete melting of the pellets. The effects of water temperature, hydrate conversion rate, and flow speed on the dissociation completion time were also investigated. Bubbling gas released from the pellet surface induced a secondary flow that enhanced the heat transfer rate and thus decreased the dissociation time. It was also found that a considerable flow rate was needed to significantly decrease the dissociation time.

An Experimental Study on the Gas Productivity from Gas Hydrate (가스하이드레이트 생산성 분석에 관한 실험 연구)

  • Park, Seoung-Soo;Han, Jeong-Min;Kwon, Ok-Bae;Shin, Chang-Hoon;Lee, Jeong-Hwan
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.37-41
    • /
    • 2006
  • In this study, an experimental apparatus has been designed and set up to analyze the dissociating phenomena of hydrate in porous rock. Experiments with the depressurization scheme have been carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water. From the experiments, it has been provided a determination of volume of gas produced and the progress of the dissociation front, as a function of time when hydrate is depressurized. Also, it has been investigated the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production

  • PDF

An Experimental Study on the Gas Productivity from Gas Hydrate (가스하이드레이트 생산성 분석에 관한 실험 연구)

  • Park, Seoung-Soo;Han, Jeong-Min;Kwon, Ok-Bae;Shin, Chang-Hoon;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.412-414
    • /
    • 2006
  • In this study, an experimental apparatus has been designed and set up to analyze the dissociating phenomena of hydrate in porous rock. Experiments with the depressurization ion scheme have been carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water. From the experiments, it has been provided a determination of volume of gas produced and the progress of the dissociation front, as a function of time when hydrate is depressurized. Also, it has been investigated the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production

  • PDF

Formation characteristics of gas hydrate in sediments (퇴적층에서의 가스 하이드레이트 생성 특성)

  • Lee, Jae-Hyoung;Lee, Won-Suk;Kim, Se-Joon;Kim, Hyun-Tae;Huh, Dae-Gi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.630-633
    • /
    • 2005
  • Some gases can be formed into hydrate by physical combination with water under appropriate temperature and pressure condition. Besides them, it was found that the pore size of the sediments can affect the formation and dissociation of hydrate. In this study, formation temperatures of carbon dioxide and methane hydrate have been measured using isobaric method to investigate the effects of flow rates of gases on formation condition of hydrate in porous rock samples. The flow rates of gases were controlled using a mass flow controller. To minimize Memory effect, system temperature increased for the dissociation of gas hydrates and re-established the initial saturation. The results show that the formation temperature of hydrate decreases with increasing the injection flow rate of gas. This indicates that the velocity of gas in porous media may act as kinds of inhibitor for the formation of hydrate.

  • PDF

The Analysis of Dissociation Properties According to Gas Hydrate Saturation and Depressurization Rate (가스하이드레이트 포화율 및 감압률에 따른 해리특성 분석)

  • An, Seung-Hee;Chon, Bo-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.54-59
    • /
    • 2015
  • The gas hydrate of 10 trillion tons are buried under continental slope in the world(permafrost : 2%, marine continental slope: 98%), but technology for the the commercial gas recovery has not developed yet. There are normally four representative recovery methods: depressurization method, thermal stimulation method, inhibition injection method, and displacement method. This study focuses on change of dissociation time and gas production according to gas hydrate saturation rate and depressurization rate. It was found that the correlation between depressrization rate and dissociation time was like as $Y=0.0004X^2-0.499X+176.86$. It was also found that the bigger depressurization rate is, the better production is(methane gas is produced over 46.2% at depressurization rate 50% compared with 40%). However, on the contrary to this, it is presumed that gas production is decreased at 60% due to gas hydrate reformation.

Experimental study for natural gas production from hydrate reservoir by electric heating method

  • Lee Hoseob;Yang Hojoon;Lee Jeonghwan;Sung Wonmo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.695-702
    • /
    • 2003
  • In this study, an experimental apparatus has been designed and set-up to analyse the dissociating phenomena of hydrate in porous rock using electric heating method supplied at downhole. The electric heat injecting experiments have been performed to investigate the heat transfer within the core, the dissociating phenomena of hydrate, and the productivities of dissociated gas and water. These experiments were under constant heat injecting method as well as preheating methods. From the experimental results, it is seen that the hydrates is dissociated along the phase equilibrium curve and dissociation of hydrate is accelerated with heat. The injected heat is consumed for the dissociation and also it is lost together with outflow of the dissociated gas and water. From the investigation of gas producing behavior for various heat injecting methods, as the injected heat is greater, dissociation is accelerated faster at outlet and hence the initial gas production becomes higher. Also, it is shown that the initial gas productivity under the constant heating method is better, however, the energy efficiency is low because of smaller amount of the produced gas comparing to the amount of heat injected. In the experiments of preheating method, it was seen that gas production only initial stage is different with the preheating time, but the producing behaviors of gas production are similar.

  • PDF