• Title/Summary/Keyword: displacement-based verification method

Search Result 36, Processing Time 0.023 seconds

Centrifuge-Shaking Table Test for Seismic Performance Evaluation of Subway Station (지하역사의 내진성능평가를 위한 원심모형 진동대 시험)

  • Kim, Jin Ho;Shin, Min Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.99-105
    • /
    • 2011
  • When a certain magnitude earthquake occurs, serious damage for human and properties is a major concern for most of the subway stations which were not applied for earthquake resistant design. Consideration and experimental verification for ground and structural behavior based on soil-structure interaction relation are required to evaluate seismic performance of the subway station as embedded structures. For 1/60 scaled subway station model, centrifuge modeling shaking table test is performed using Kobe and Northridge earthquakes. Compare to displacements and moments of the underground and structure obtained by soil response analysis and response displacement method based on experimental results, this paper shows how to evaluate seismic performance of subway station.

Verification of Real-time Hybrid Test System using RC Pier Model (RC교각을 이용한 실시간 하이브리드 실험 시스템의 적용성 연구)

  • Lee, Jinhaeng;Park, Minseok;Chae, Yunbyeong;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.253-259
    • /
    • 2018
  • Structure behaviors resulting from an earthquake are experimentally simulated mainly through a shaking table test. As for large-scale structures, however, size effects over a miniature may make it difficult to assess actual behaviors properly. To address this problem, research on the hybrid simulation is being conducted actively. This method is to implement numerical analysis on framework members that affect the general behavior of the structure dominantly through an actual scale experiment and on the rest parts by applying the substructuring technique. However, existing studies on hybrid simulation focus mainly on Slow experimental methods, which are disadvantageous in that it is unable to assess behaviors close to the actual level if material properties change depending on the speed or the influence of inertial force is significant. The present study aims to establish a Real-time hybrid simulation system capable of excitation based on the actual time history and to verify its performance and applicability. The hybrid simulation system built up in this study utilizes the ATS Compensator system, CR integrator, etc. in order to make the target displacement the same with the measured displacement on the basis of MATLAB/Simulink. The target structure was a 2-span bridge and an RC pier to support it was produced as an experimental model in order for the shaking table test and Slow and Real-time hybrid simulations. Behaviors that result from the earthquake of El Centro were examined, and the results were analyzed comparatively. In comparison with the results of the shaking table test, the Real-time hybrid simulation produced more similar maximum displacement and vibration behaviors than the Slow hybrid simulation. Hence, it is thought that the Real-time hybrid simulation proposed in this study can be utilized usefully in seismic capacity assessment of structural systems such as RC pier that are highly non-linear and time-dependent.

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

Seismic Design of Buckling-Restrained Braced frame Using Equivalent Energy Concept (등가 에너지 개념을 이용한 비좌굴 가새골조의 내진설계)

  • 김진구;최현훈;원영섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.47-55
    • /
    • 2003
  • This study proposed a convenient seismic design procedure for buckling-restrained braced frames based on the equivalent energy concept. The design process begins with the computation of input energy from response spectrum. Then the elastic energy and plastic energy are computed based on the equal energy concept. The computed plastic energy is distributed to each story along energy distribution ratio and the cross-sectional area of each brace is computed so that all the plastic energy is dissipated by the brace. The proposed procedure was applied to the design of three-, six-, and twenty-story steel frames with buckling-restrained braces, and artificial earthquake records were used for verification of the proposed method. According to analysis results, top story displacements of the low-rise structure satisfies the given target displacement however that of the twenty-story structure was much smaller than the given target displacement.

Simplified procedure for seismic analysis of base-isolated structures

  • Serror, Mohammed H.;El-Gazzar, Sherif O.;Mourad, Sherif A.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1091-1111
    • /
    • 2015
  • Base isolation is an effective method for protecting structures against earthquake hazard. It elongates the period of vibration and introduces supplemental damping to the structural system. The stiffness, damping and displacement are coupled forcing the code seismic design procedure to be unnecessarily complicated. In addition, the force reduction factor -a key parameter in the design procedurehas not been well addressed by seismic design codes at the high levels of damping due to the pronounced difference between pseudo and actual accelerations. In this study, a comparison has been conducted to evaluate eight different methods, in the literature, for calculating the force reduction factor due to damping. Accordingly, a simplified seismic analysis procedure has been proposed based on the well documented N2 method. Comprehensive analysis has been performed for base-isolated structure models for direct application and verification of the proposed procedure. The results have been compared with those of the European code EC8, the nonlinear time history analysis and investigations in the literature, where good agreement has been reported. In addition, a discussion has been elaborated for the resulted response of the base-isolated structure models with respect to the dynamic characteristics of the base isolation system.

'Modularised' Closed-Form Mathematical model for predicting the bracing performance of plasterboard clad walls

  • Liew, Y.L.;Gad, E.F.;Duffield, C.F.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.45-67
    • /
    • 2005
  • This paper presents a new approach to predict the racking load-displacement response of plasterboard clad walls found in Australian light-framed residential structures under monotonic racking load. The method is based on a closed-form mathematical model, described herein as the 'Modularised' Closed-Form Mathematical model or MCFM model. The model considers the non-linear behaviour of the connections between the plasterboard cladding and frame. Furthermore, the model is flexible as it enables incorporation of different nailing patterns for the cladding. Another feature of this model is that the shape of stud deformation is not assumed to be a specific function, but it is computed based on the strain energy approach to take account of the actual load deformation characteristics of particular walls. Verification of the model against the results obtained from a detailed Finite Element (FE) model is also reported. Very good agreement between the closed form solution and that of the FE model was achieved.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Verification of NASCOM : Nonlinear Finite Element Analysis for Structural Concrete (NASCOM에 의한 실험결과 예측)

  • 조순호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory), considering the effect of compression softening in cracked concrete, and macro-scopic and rotating crack models etc., was presented for the nonlinear behaviour of structural concrete. Considering the computational efficency and the ability of modelling the post-ultimate behaviour as major concerns, the Incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Non1inear Analysis of Structural Concrete by FEM : Monotonic Loading) developed in this way enables the predictions of strength and deformation capacities in a full range, crack patterns and their corresponding widths, and yield extents of reinforcement. As the verification purpose of NASCOM, the predictions were made for Bhide's Panel(PB21) and Leonhardt's deep beam tests. The predicted results shows somewhat stiff behaviour for the panel test, and vice versa for deep beam tests. More refining process would be necessary hereafter in terms of more accurately simulating the effects of tension-stiffening and compression softening in concrete.

Verification of Damage Detection Using In-Service Time Domain Response (사용중 시간영역응답을 이용한 손상탐지이론의 검증)

  • Choi, Sang-Hyun;Kim, Dae-Hyork;Park, Nam-Hoi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.9-13
    • /
    • 2009
  • Modal parameters including resonant frequencies and mode shapes are heavily utililized in most damage identification throries for structural health monitoring. However, extracting modal parameters from dynamic responses needs postprocessing which inevitably involves errors in curve-fitting resonants as well as transforming the domain of responses. In this paper, the applicability of a damage identification method based on free vibration responses to the in-sevice responses is experimentally verified. The experiment is performed via applying periodic and nonperiodic moving loads to a simply supported beam and displacement responses are measured. The moving load is simulated using steel balls and a downhill device. The damage identification results show that the in-service response may be applicable to identifying damage in the beam.

A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions (수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구)

  • Choung, Joonmo;Lee, Jae-bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.