• 제목/요약/키워드: displacement incremental method

검색결과 108건 처리시간 0.026초

MLS차분법을 이용한 재료비선형 문제 해석 (Development of MLS Difference Method for Material Nonlinear Problem)

  • 윤영철
    • 한국전산구조공학회논문집
    • /
    • 제29권3호
    • /
    • pp.237-244
    • /
    • 2016
  • 본 연구는 재료비선형 문제를 다루기 위한 비선형 MLS 차분법의 정식화 과정을 제시한다. MLS 차분법은 절점모델을 기반으로 고속 미분근사식을 활용하여 지배 미분방정식을 직접 이산화 하는데, 변수를 변위로 일원화한 Navier 방정식을 사용하여 탄성재료 문제를 다룬 기존의 MLS 차분법은 재료의 구성방정식을 별도로 고려할 수 없다. 본 연구에서는 비선형 재료의 구성방정식을 반영할 수 있는 강정식화를 위해 1차 미분근사를 반복 사용하는 겹미분근사를 고안했다. 응력의 발산으로 표현되는 평형방정식을 그대로 이산화하고 Newton 방법을 적용하여 반복계산을 통해 수렴해를 찾는 비선형 알고리즘을 제시했다. 응력 계산과 내부변수의 갱신은 return mapping 알고리즘을 활용하였고, 알고리즘 접선계수(algorithmic tangent modulus)의 적용을 통해 빠르고 안정적인 반복계산이 가능하도록 하였다. 재생성 시험을 통해 겹미분근사의 정당성을 검증했고, 비선형재료에 대한 인장문제의 해석을 통해 개발된 비선형 MLS 차분 알고리즘의 정확성과 안정성을 확인하였다.

Seismic evaluation of existing RC frames with wide beams using an energy-based approach

  • Benavent-Climent, A.;Zahran, R.
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.93-108
    • /
    • 2010
  • This paper investigates the seismic performance of existing reinforced concrete frames with wide beams mainly designed for gravity loads, as typically found in the seismic-prone Mediterranean area before the introduction of modern codes. The seismic capacity is evaluated in terms of the overall amount of input energy that the frame can dissipate/absorb up to collapse. This approach provides a quantitative evaluation that can be useful for selecting and designing an appropriate retrofit strategy. Six prototype frames representative of past construction practices in the southern part of Spain are designed, and the corresponding non-linear numerical models are developed and calibrated with purposely conducted tests on wide beam-column subassemblages. The models are subjected to sixteen earthquake records until collapse by applying the incremental dynamic analysis method. It is found that the ultimate energy dissipation capacity at the story level is markedly low (about 1.36 times the product of the lateral yield strength and yield displacement of the story), giving values for the maximum amount of energy that the frame can dissipate which are from one fourth to half of that required in moderate-seismicity regions.

복합적층구조 해석을 위한 개선된 쉘요소 (An Improved Degenerated Shell Element for Analysis of Laminated Composite Structures)

  • 최창근;유승운
    • 대한토목학회논문집
    • /
    • 제11권3호
    • /
    • pp.1-10
    • /
    • 1991
  • 본 논문에서는 개선된 감절점(degenerated) 쉘 유한요소의 복합적충을 갖는 쉘구조에의 적용성을 고찰하였다. 본 논문의 개선된 쉘 요소는 shear locking 해결에 우수한 결과를 보인 가정된 전단변형도를 대치사용하고, membrane locking 현상을 제거하기 위해 평면내 변형도의 구성시 감차적분을 행하며, 쉘요소 자체의 거동을 보완하기 위해 비적합변위형을 선택적으로 추가하였다. 본 요소는 shear/membrane locking이 발생하지 않으며, 전달가능한 거짓 영에너지모드도 나타나지 않는다. 유한변형을 고려한 기하학적 비선형 방정식을 total Lagrangian 수식화를 시용하여 정형화 하였고, 비선형 수치해석은 Newton-Raphson 반복법으로 반복 계산한다. 여러 예제해석을 통하여 본 개선된 쉘 유한요소의 유용성과 정확도를 고찰하였다.

  • PDF

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

등매개(等媒介) 변수요소(變數要素)를 이용한 쉘의 선형(線形) 및 비선형(非線形) 안정해석(安定解析) (Linear and Nonlinear Stability Analysis of Shells Using Degenerated Isoparametric Elements)

  • 이남호;최창근
    • 대한토목학회논문집
    • /
    • 제7권2호
    • /
    • pp.21-28
    • /
    • 1987
  • 본(本) 연구(硏究)는 불안정(不安定)현상을 포함한 대변위(大變位)를 고려한 해석(解析)에 8절점(節點) 등매개(等媒介) 변수요소(變數要素)를 적용하여 그 요소(要素)의 우수성을 증명하고 있다. 여기서 채택하고 있는 비선형(非線形) 공식(公式)은 Total Lagrangian 공식(公式)이며, 해석(解析)방법은 하중증분(荷重增分)을 병행한 Newton-Raphson 방법을 이용했다. 안정해석(安定解析)을 수행할 경우 비선형(非線形) 경로(經路)를 따라 반복함으로써 최종 파괴하중을 매 순간 측청할 수 있도록 프로그램을 작성했다. 검증(檢證)을 위해 등분포(等分布) 하중(荷重)을 받는 원개형(圓箇形)쉘, 축(軸)하중을 받는 단순지지(單純支持)형 평판, 그리고 등분포(等分布) 하중(荷重)을 받는 고정된 평판 등과 같은 예제를 수행하여 이론해(理論解) 및 다른 결과(結果)들과 비교 분석했다.

  • PDF

Incremental extended finite element method for thermal cracking of mass concrete at early ages

  • Zhu, Zhenyang;Zhang, Guoxin;Liu, Yi;Wang, Zhenhong
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.33-42
    • /
    • 2019
  • Thermal cracks are cracks that commonly form at early ages in mass concrete. During the concrete pouring process, the elastic modulus changes continuously. This requires the time domain to be divided into several steps in order to solve for the temperature, stress, and displacement of the concrete. Numerical simulations of thermal crack propagation in concrete are more difficult at early ages. To solve this problem, this study divides crack propagation in concrete at early ages into two cases: the case in which cracks do not propagate but the elastic modulus of the concrete changes and the case in which cracks propagate at a certain time. This paper provides computational models for these two cases by integrating the characteristics of the extended finite element algorithm, compiles the corresponding computational programs, and verifies the accuracy of the proposed model using numerical comparisons. The model presented in this paper has the advantages of high computational accuracy and stable results in resolving thermal cracking and its propagation in concrete at early ages.

초기응력이 있는 탄성체의 선형 및 비선형해석 -플레이트 스트립을 중심으로 (Linear and Nonlinear Analysis of Initially Stressed Elastic Solid)

  • 권영두;최진민
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.642-651
    • /
    • 1988
  • 본 연구에서는 정적 혹은 동적인 하중을 받는 탄성체의 변위, 응력 등을 구할 수 있는 유한요소해석을 하였다. 이 경우에 얻어지는 대수적인 운동방정식은 비선형 적이지만 증분응력이 미소한 경우에는 선형화될 수 있다.따라서 유한요소식의 해법 도 선형적인 경우와 비선형적인 경우로 나누어 생각한다.선형문제에 대한 해법으로 는 (1) 정하중:Gauss소거법, (2) 동하중:모우드에 대한 해석 또는 Newmark의 직접적분 법을 사용했고, 비선형적인 문제에 대한 해법으로는 (1) 정하중:Newton-Raphson반복법, (2) 동하중 :Newton-Raphson 반복법에 의거한 Newmark의 직접적분법을 사용하였다. 비선형적인 문제의 풀이시에는 Newton-Raphson방법으로 반복하여 계산하면서 외력과 등가절점하중의 평형이 이루어지도록 하므로 상당히 많은 양의 계산이 필요한데, 이때 서로 종류가 다른 강성매트릭스의 수치적분시 각기 다른 차수의 Gauss-Legendre 적분 을 시도하여, 발생된 오차 및 계산시간의 변동 등을 고찰하므로써 계산량의 감소방안 을 찾아 보았다. 또한 초기응력이 균일한 경우, 선형해와 비선형해를 비교함으로써 증분응력의 영향을 무시하는 선형해석의 적용타당성을 검토하였다.

돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구 (A Study on the Unstable behavior According to rise-span ratio of dome type space frame)

  • 손수덕;김승덕;강문명
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.