• Title/Summary/Keyword: displacement damage

Search Result 761, Processing Time 0.031 seconds

Numerical Analysis of Behavior of Ground Near LNG Tank Foundation Under Scenario of LNG Leakage (LNG 탱크에서 천연가스 유출시 얕은 기초 주변 지반거동의 수치해석적 분석)

  • Kim, Jeongsoo;Kim, Youngseok;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.81-92
    • /
    • 2018
  • Recently, the use of natural gas has steadily increased due to its economical advantage and increased demand of clean energy uses. Accordingly, construction of LNG storage tanks is also increased. Secure of the stability of LNG tanks storage requires high technology as natural gas is stored in a liquid state for efficiency of storage. When a cryogenic LNG fluid leaks on ground due to a defect in LNG tank, damage is expected to be significant. Many researchers evaluated the critical and negative effects of LNG leakage, but there is limited research on the effect of cryogenic fluid leakage on the ground supporting LNG tanks. Therefore, in this study, the freezing expansion of the ground during cryogenic LNG fluid leakage was evaluated considering various outflow situations and ground conditions. The LNG leakage scenarios were simulated based on numerical analyses results varying the surcharge load, temperature boundary conditions, and soil types including freeze-sensitive soil. Consequently, short and long term ground temperature variations after LNG leakage were evaluated and the resulting ground behavior including vertical displacement behavior and porosity were analyzed.

Ductile Fracture of a Marine Structural Steel based on HC-DSSE Combined Fracture Strain Formulation (HC-DSSE 조합 파단 변형률 정식화에 기반한 선박해양 구조물용 강재의 연성 파단 예측)

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Kim, Younghyn;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.82-93
    • /
    • 2019
  • In this paper, the ductile fracture criteria for a marine structural steel (EH36) are presented and validated. The theoretical background of the recently developed Hosford-Coulomb (HC) fracture strain model and the DSSE fracture strain model which was developed to apply to the shell elements is described. In order to accurately estimate the flow stress in the large strain range up to the fracture, the material constants for the combined Swift-Voce constitutive equation were derived by the numerical analyses of the smooth and notched specimens made from the EH36 steel. As a result of applying the Swift-Voce flow stress to the other notched specimen model, a very accurate load - displacement curve could be derived. The material constants of the HC fracture strain and DSSE fracture strain models were independently calibrated based on the numerical analyses for the smooth and notch specimen tests. The user subroutine (VUMAT of Abaqus) was developed to verify the accuracy of the combined HC-DSSE fracture strain model. An asymmetric notch specimen was used as verification model. It was confirmed that the fracture of the asymmetric specimen can be accurately predicted when a very small solid elements are used together with the HC fracture strain model. On the other hand, the combined HC-DSSE fracture strain model can predict accurately the fracture of shell element model while the shell element size effect becomes less sensitive.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Analysis and Evaluation of the Distributed Control Braking System of Long Freight Car Brakes (장대화물열차의 분산제어 제동 시 연결기에 발생하는 충격력 해석 및 분석)

  • Cho, Byung Jin;Lee, Jeong Jun;Shim, Jae Seok;Koo, Jeong Seo;Mun, Hyung Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • In long freight trains, there is a brake time delay in neighboring freight cars, which causes damage and fractures in the couplers, especially at their knuckle. A problem in the couplers of the cars can cause derailment and damages of human life and property. In this study, maximum forces on the couplers are studied when a long freight car brakes with the brake delay time and coupler gap. We make a dynamic model of 50 freight cars and couplers, applying contact between the couplers and a characteristic curve to express the force and displacement of the buffers using SIMPACK, which is a multi-body dynamics program. We use EN 14531-2, which is a standard of freight car brakes, to verify the dynamic model. Then, we compare the analyzed impact force with the coupler knuckle standard after applying the two carriages of a locomotive in the model based on the dispersed double head control system. The result shows that all coupler gap conditions satisfy the infinite lifetime of the material when the brake delay time is 0.1 second.

Review of earthquake-induced landslide modeling and scenario-based application

  • Lee, Giha;An, Hyunuk;Yeon, Minho;Seo, Jun Pyo;Lee, Chang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.963-978
    • /
    • 2020
  • Earthquakes can induce a large number of landslides and cause very serious property damage and human casualties. There are two issues in study on earthquake-induced landslides: (1) slope stability analysis under seismic loading and (2) debris flow run-out analysis. This study aims to review technical studies related to the development and application of earthquake-induced landslide models (seismic slope stability analysis). Moreover, a pilot application of a physics-based slope stability model to Mt. Umyeon, in Seoul, with several earthquake scenarios was conducted to test regional scale seismic landslide mapping. The earthquake-induced landslide simulation model can be categorized into 1) Pseudo-static model, 2) Newmark's dynamic displacement model and 3) stress-strain model. The Pseudo-static model is preferred for producing seismic landslide hazard maps because it is impossible to verify the dynamic model-based simulation results due to lack of earthquake-induced landslide inventory in Korea. Earthquake scenario-based simulation results show that given dry conditions, unstable slopes begin to occur in parts of upper areas due to the 50-year earthquake magnitude; most of the study area becomes unstable when the earthquake frequency is 200 years. On the other hand, when the soil is in a wet state due to heavy rainfall, many areas are unstable even if no earthquake occurs, and when rainfall and 50-year earthquakes occur simultaneously, most areas appear unstable, as in simulation results based on 100-year earthquakes in dry condition.

Development of an accelerated life test procedure considering the integrated equivalent load of an implement working pump for an agricultural tractor

  • Moon, Seok-Pyo;Baek, Seung-Min;Chung, Sun-Ok;Park, Young-Jun;Han, Tae-Ho;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1123-1134
    • /
    • 2020
  • The goal of this study was to develop an accelerated life test for an implement working pump for an agricultural tractor. The field experiments were conducted to measure the load of an implement working pump during major agricultural operations such as plow tillage, rotary tillage, baler operations, and wrapping operations. The measurement system for an implement working pump load was constructed using a pressure sensor, the engine rotational speed, and the hitch pump displacement. The measured implement working pump load was calculated as an equivalent load for each agricultural operation using the Palmgren-Miner rule, which is a cumulative damage method. The equivalent load was calculated using the total load data and peak load data when the total data included the operation of an implement working. The annual usage time of the agricultural tractor was applied to develop two integrated equivalent loads. The acceleration factor was calculated to develop an accelerated life test and was calculated from the two integrated equivalent loads, the maximum pressure, and the flow rate conditions of the hitch pump. In Korea, the warranty life of a tractor is 2,736 hours, and the time required for the test to guarantee the operational life of tractors was calculated as 7,561 hours. The acceleration factors were calculated as 453.6 and 38.3, respectively, from the total load data and peak load data. The fatigue test time can be shortened by 16.7 and 197.4 hours according to the result of the acceleration factors.

Dynamic Responses of Offshore Meteorological Tower Under Wind and Wave (바람과 파랑을 받는 해상 풍력 기상탑의 동적 응답)

  • Kwon, Soon-Duck
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.171-177
    • /
    • 2018
  • In order to investigate the cause of damage of the offshore meteorological tower, the measured wind speed data were analyzed, the dynamic displacement due to fluctuating wind load and wave load was calculated, and the fatigue was examined for vortex-induced vibration. It was confirmed from the results that the vibration lasting for four hours occurred in the meteorological tower when the maximum wind speeds for 10 minutes were compared for both the vane anemometer and ultrasonic anemometer. The effect of the gust wind on the dynamic response of the meteorological tower was greater than the wave. However, the combined forces acting on the meteorological tower was much lower than the design force even though the wind and wave loads were simultaneously applied. The vortex-induced vibration seemed to be cause of the fatigue failure in the connecting bolts. The destruction of the offshore meteorological tower was considered to be a vortex-induced vibration, not a fluctuating fluid flows.

Dynamic Characteristic of the Seismic Performance of Uninterruptible Power Supply with Combined Isolator Using Shaking Table Test (복합면진장치를 적용한 무정전전원장치의 1축 진동대실험 기반 동적특성 분석)

  • Lee, Ji-Eon;Lee, Seung-Jae;Park, Won-Il;Choi, Kyoung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • In this study, three types of combined isolator consisting of High Damping Rubber Bearing (HDRB) and wire isolator were developed for Uninterruptible Power Supply system (UPS). The dynamic characteristics of the combined isolator were investigated through one-axis shaking table test. The input acceleration were generated in accordance with ICC-ES AC156 code. Scale factors of the input acceleration were designed to be 0.5-2 times the required response spectrum defined in ICC-ES AC156. Based on the test results, damage and dynamic characteristics of the UPS were investigated: including natural frequency, damping ratio, acceleration time history response, dynamic amplification factor and relative displacement. Based on that, it was found that the combined isolator developed in this study could improve the seismic behavior of the UPS, in particular, the response acceleration.

Structural and radiological characterization of irradiated RBMK-1500 reactor graphite

  • Lagzdina, Elena;Lingis, Danielius;Plukis, Arturas;Plukiene, Rita;Germanas, Darius;Garbaras, Andrius;Garankin, Jevgenij;Gudelis, Arunas;Ignatjev, Ilja;Niaura, Gediminas;Krutovcov, Sergej;Remeikis, Vidmantas
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.234-243
    • /
    • 2022
  • This study aims to characterize the irradiated RBMK-1500 nuclear graphite in terms of both structural and radiological properties. The experimental results of morphological and structural analysis of the irradiated graphite samples by using SEM, Raman spectroscopy as well as the theoretical evaluation of primary displacement damage are presented. Moreover, the experimental and theoretical evaluation of the neutron flux is provided and the presence of several γ emitters in the analyzed graphite samples is assessed. Furthermore, the improved version of rapid analysis method for 14C activity determination is applied and the experimentally obtained results are compared with calculated ones. Results indicate that structural changes are uniform enough in all the analyzed samples. However, the distribution of radionuclides is non-homogeneous in the irradiated RBMK-1500 reactor graphite matrix. The comprehensive understanding of both structural and radiological characteristics of nuclear graphite is very important when dealing with decision about irradiated graphite waste management strategy or treatment options prior to its final disposal.

Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet (FRP 시트로 보강된 철근콘크리트 벽체의 방호성능 평가)

  • Lee, Kun-Ho;Kim, Jae-Min;Kim, Jae Hyun;Lee, Sang-Hoon;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.151-160
    • /
    • 2022
  • Owing to the recent increase in the frequency of explosion accidents, blast resistive design has garnered attention to reduce the damage of important structural elements. However, domestic research on the blast resistive structures is still insufficient, and domestic design guideline against blast loads are not documented yet. In this study, a numerical study on the RC blast resistive walls, where the test variable was the presence of FRP sheet, was performed using LS-DYNA program. Based on the numerical results, displacement-time hysteretic curve, pressure-impulse diagram, and fragility curve of the test specimens were derived. It was shown that the FRP sheet strengthening method is efficient to improve the blast resistive performance of the RC wall. Also, the strengthening effect of FRP sheet on the RC wall was stronger when the magnitude of the blast load was greater.