DOI QR코드

DOI QR Code

Structural and radiological characterization of irradiated RBMK-1500 reactor graphite

  • Lagzdina, Elena (Department of Nuclear Research, Center for Physical Sciences and Technology) ;
  • Lingis, Danielius (Department of Nuclear Research, Center for Physical Sciences and Technology) ;
  • Plukis, Arturas (Department of Nuclear Research, Center for Physical Sciences and Technology) ;
  • Plukiene, Rita (Department of Nuclear Research, Center for Physical Sciences and Technology) ;
  • Germanas, Darius (Department of Nuclear Research, Center for Physical Sciences and Technology) ;
  • Garbaras, Andrius (Department of Nuclear Research, Center for Physical Sciences and Technology) ;
  • Garankin, Jevgenij (Department of Nuclear Research, Center for Physical Sciences and Technology) ;
  • Gudelis, Arunas (Department of Metrology, Center for Physical Sciences and Technology) ;
  • Ignatjev, Ilja (Department of Organic Chemistry, Center for Physical Sciences and Technology) ;
  • Niaura, Gediminas (Department of Organic Chemistry, Center for Physical Sciences and Technology) ;
  • Krutovcov, Sergej (State Enterprise Ignalina Nuclear Power Plant) ;
  • Remeikis, Vidmantas (Department of Nuclear Research, Center for Physical Sciences and Technology)
  • Received : 2020.12.24
  • Accepted : 2021.07.25
  • Published : 2022.01.25

Abstract

This study aims to characterize the irradiated RBMK-1500 nuclear graphite in terms of both structural and radiological properties. The experimental results of morphological and structural analysis of the irradiated graphite samples by using SEM, Raman spectroscopy as well as the theoretical evaluation of primary displacement damage are presented. Moreover, the experimental and theoretical evaluation of the neutron flux is provided and the presence of several γ emitters in the analyzed graphite samples is assessed. Furthermore, the improved version of rapid analysis method for 14C activity determination is applied and the experimentally obtained results are compared with calculated ones. Results indicate that structural changes are uniform enough in all the analyzed samples. However, the distribution of radionuclides is non-homogeneous in the irradiated RBMK-1500 reactor graphite matrix. The comprehensive understanding of both structural and radiological characteristics of nuclear graphite is very important when dealing with decision about irradiated graphite waste management strategy or treatment options prior to its final disposal.

Keywords

Acknowledgement

We would like to acknowledge Dr. Giedrius Stalnionis from Department of Characterization of Materials Structure (Center for Physical Sciences and Technology, Lithuania), who helped us to obtain high quality SEM images of both irradiated and raw graphite samples.

References

  1. Galutinis Ignalinos AE Eksploatavimo Nutraukimo Planas: Atlieku Tvarkymas, 2018.
  2. K. Almenas, A. Kaliatka, E. Uspuras, Ignalina RBMK-1500 A Source Book, Lithuanian Energy Institute, 1998.
  3. E. Narkunas, P. Poskas, A. Smaizys, S. Norris, Estimation of the inventory of 14C and other key radionuclides in irradiated RBMK-1500 graphite based on limited measurements and full 3D core modeling, Radiocarbon 60 (2018) 1849-1859, https://doi.org/10.1017/RDC.2018.122.
  4. M.D. Bondar'kov, D.M. Bondar'kov, A.M. Maksimenko, V.A. Zheltonozhskii, M.V. Zheltonozhskaya, V.V. Petrov, A.I. Savin, Activity study of graphite from the chernobyl NPP reactor, Bull. Russ. Acad. Sci. Phys. 73 (2009) 261-265, https://doi.org/10.3103/S1062873809020300.
  5. IAEA-TECDOC-1154, Irradiation Damage in Graphite Due to Fast Neutrons in Fission and Fusion Systems, 7, IAEA, 2000.
  6. D. Lingis, E. Lagzdina, A. Plukis, R. Plukiene, V. Remeikis, Evaluation of the primary displacement damage in the neutron irradiated RBMK-1500 graphite, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 436 (2018) 9-17, https://doi.org/10.1016/j.nimb.2018.08.038.
  7. B. Zlobenko, B. Shabalin, V. Skripkin, Y. Fedorenko, V. Yatzenko, Report on graphite categories in the RBMK reactor (D5.3) Version 2, CArbon-14 Source Term CAST Project (2016) 1-28.
  8. T.D. Burchell, P.J. Pappano, J.P. Strizak, A study of the annealing behavior of neutron irradiated graphite, Carbon N. Y. 49 (2011) 3-10, https://doi.org/10.1016/j.carbon.2010.08.026.
  9. Valstybes Imone Ignalinos Atomine Elektrine, Ignalinos Atomines Elektrines Galutinis Eksploatavimo Nutraukimo Planas, 2020.
  10. IAEA, Treatment of irradiated graphite to meet acceptance criteria for waste disposal, ACTIVE (2010) T21026. https://www.iae.lt/veikla/eksploatavimonutraukimas/dalyvavimas-sprendimu-priemime/307.
  11. M.E. Pick, Magnox Graphite Core Decommissioning and Disposal Issues, Baseline. ((n.d.)).
  12. V. Remeikis, E. Lagzdina, A. Garbaras, A. Gudelis, J. Garankin, R. Plukiene, L. Juodis, G. Duskesas, D. Lingis, V. Abdulajev, A. Plukis, Rapid analysis method for the determination of 14C specific activity in irradiated graphite, PloS One 13 (2018), https://doi.org/10.1371/journal.pone.0191677.
  13. V. Remeikis, A. Plukis, R. Plukiene, A. Garbaras, R. Barisevi _ ciut e, A. Gudelis, R. Gvozdaite, G. Du _ skesas, L. Juodis, Method based on isotope ratio mass spectrometry for evaluation of carbon activation in the reactor graphite, Nucl. Eng. Des. 240 (2010) 2697-2703, https://doi.org/10.1016/j.nucengdes.2010.06.020.
  14. R. Plukiene, E. Lagzdina, L. Juodis, A. Plukis, A. Puzas, R. Gvozdaite, V. Remeikis, Z. Revay, J. Ku cera, D. Ancius, D. Ridikas, Investigation of impurities of RBMK graphite by different methods, Radiocarbon 60 (2018) 1861-1870, https://doi.org/10.1017/RDC.2018.93.
  15. R. Macfarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler III, J.L. Conlin, The NJOY Nuclear Data Processing System, Version 2016, Los Alamos, NM (United States), 2017, https://doi.org/10.2172/1338791.
  16. M.R. Gilbert, J. Marian, J.C. Sublet, Energy spectra of primary knock-on atoms under neutron irradiation, J. Nucl. Mater. 467 (2015) 121-134, https://doi.org/10.1016/j.jnucmat.2015.09.023.
  17. M. Herman, ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and, ENDF/B-VII, Upton, NY (United States), 2009, https://doi.org/10.2172/981813.
  18. R.E. MacFarlane, A.C. Kahler, Methods for processing ENDF/B-vii with NJOY, Nucl. Data Sheets 111 (2010) 2739-2890, https://doi.org/10.1016/j.nds.2010.11.001.
  19. M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33 (1975) 50-54, https://doi.org/10.1016/0029-5493(75)90035-7.
  20. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4da simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8.
  21. A. Garbaras, E. Bruzas, V. Remeikis, Stable carbon isotope ratio (δ13C) measurement of graphite using EA-IRMS system, Mater. Sci. (2015) 2-7, https://doi.org/10.5755/j01.mm.21.2.6873.
  22. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, S. Mashnik, G. Mckinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Zukaitis, G. Mckinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, Initial MCNP6 Release Overview INITIAL MCNP6 RELEASE OVERVIEW, 2017, p. 5450, https://doi.org/10.13182/NT11-135.
  23. D. Ancius, D. Ridikas, R. Plukiene, Evaluation of the activity of irradiated graphite in the Ignalina nuclear power evaluation of the activity of irradiated graphite in the Ignalina nuclear power plant RBMK-1500 reactor, Nukleonika 50 (2005) 113-120.
  24. R. Plukiene, A. Plukis, A. Puzas, V. Remeikis, Modelling of impurity activation _ in the RBMK reactor graphite using MCNPX, Prog. Nucl. Sci. Technol. 2 (2011) 421-426, https://doi.org/10.15669/pnst.2.421.
  25. A. Plukis, R. Plukiene, V. Barkauskas, G. Du _ skesas, D. Germanas, L. Juodis, E. Lagzdina, V. Remeikis, The 3D model for radioactive graphite characterization in the Ignalina NPP RBMK-1500 reactor. Proc., PHYSOR 2018, Cancun, Mex, 2018.
  26. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, Endf/B-viii . 0 : the 8 th major release of the nuclear reaction data library with CIELO-project cross sections , new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142, https://doi.org/10.1016/j.nds.2018.02.001.
  27. A. Jasiulevicius, Analysis Methodology for RBMK-1500 Core Safety and Investigations on Corium Coolabiblty during a LWR Sever Accidnet, Energiteknik, Stockholm, 2003.
  28. L. Payne, P.J. Heard, T.B. Scott, Examination of surface deposits on Oldbury reactor core graphite to determine the concentration and distribution of 14C, PloS One 11 (2016) 1-19, https://doi.org/10.1371/journal.pone.0164159.
  29. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9 (2007) 1276-1291, https://doi.org/10.1039/b613962k.
  30. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B Condens. Matter 64 (2001) 1-13, https://doi.org/10.1103/PhysRevB.64.075414.
  31. E. Lagzdina, D. Lingis, A. Plukis, R. Plukiene, M. Gaspariunas, I. Matulaitiene, V. Kovalevskij, G. Niaura, V. Remeikis, Structural investigation of RBMK nuclear graphite modified by 12C+ ion implantation and thermal treatment, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 444 (2019) 23-32, https://doi.org/10.1016/j.nimb.2019.01.049.
  32. N. Galy, N. Toulhoat, N. Moncoffre, Y. Pipon, N. Bererd, M.R. Ammar, P. Simon, D. Deldicque, P. Sainsot, Ion irradiation used as surrogate of neutron irradiation in graphite: consequences on14C and36Cl behavior and structural evolution, J. Nucl. Mater. 502 (2018) 20-29, https://doi.org/10.1016/j.jnucmat.2018.01.058.
  33. V.N. Bushuev, A.V. Verzilov, M. Yu, Zubarev, Radionuclide Characterization of Graphite Stacks from Plutonium Production Reactors of the Siberian Group of Chemical Enterprises, IAEA, 2001.
  34. IAEA-TECDOC-1521, Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors, IAEA, 2006.
  35. IAEA Nuclear Energy Series, Determination and Use of Scaling Factors for Waste Characterization in Nuclear Power Plants, IAEA Tech. Reports, 2009. No. NW-T-1.
  36. V. Remeikis, R. Plukiene, A. Plukis, V. Barkauskas, A. Gudelis, R. Druteikiene, R. Gvozdaite, L. Juodis, G. Duskesas, E. Lagzdina, D. Germanas, D. Ridikas, S. Krutovcov, Characterisation of RBMK-1500 graphite: a method to identify the neutron activation and surface contamination terms, Nucl. Eng. Des. 361 (2020), https://doi.org/10.1016/j.nucengdes.2019.110501.