• Title/Summary/Keyword: displacement component

Search Result 273, Processing Time 0.03 seconds

Structural damage localization using spatial wavelet packet signature

  • Chang, C.C.;Sun, Z.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.29-46
    • /
    • 2005
  • In this study, a wavelet packet based method is proposed for identifying damage occurrence and damage location for beam-like structures. This method assumes that the displacement or the acceleration response time histories at various locations along a beam-like structure both before and after damage are available for damage assessment. These responses are processed through a proper level of wavelet packet decomposition. The wavelet packet signature (WPS) that consists of wavelet packet component signal energies is calculated. The change of the WPS curvature between the baseline state and the current state is then used to identify the locations of possible damage in the structure. Two numerical studies, one on a 15-storey shear-beam building frame and another on a simply-supported steel beam, and an experimental study on a simply-supported reinforced concrete beam are performed to validate the proposed method. Results show the WPS curvature change can be used to locate both single and sparsely-distributed multiple damages that exist in the structure. Also the accuracy of assessment does not seem to be affected by the presence of 20-15dB measurement noise. One advantage of the proposed method is that it does not require any mathematical model for the structure being monitored and hence can potentially be used for practical application.

High-Temperature Structural Analysis on the Medium-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop (소형가스루프 시험조건에서 중형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A PHE (Process Heat Exchanger) in a nuclear hydrogen system is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute has established a small-scale gas loop for the performance test on VHTR components and recently has manufactured a medium-scale PHE prototype made of Hastelloy-X. A performance test on the PHE prototype is scheduled in the gas loop. In this study, high-temperature structural analysis modeling, and macroscopic thermal and structural analysis of the medium-scale PHE prototype by imposing the established displacement boundary constraints in the previous research were carried out under the gas loop test condition. The results obtained in this study will be compared with performance test results.

An investigation on the system characteristics of a refrigerator with alternative refrigerants (대체냉매를 이용한 가정용 냉장고의 시스템 특성에 관한 연구)

  • 신진규;문춘근;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.753-762
    • /
    • 1998
  • A domestic refrigerator is composed of many components such as a compressor, evaporator, capillary tube, and the cabinet which plays a great role on the cycle performance, even if it is not the basic component part in the cycle. Recently, the restriction policy on the energy-saving and environmentally friendly refrigerator is reinforced in our nation as well as developed countries. Therefore, in this paper, cycle simulations and experiments were carried out ito understand the characteristics of the cycle performance using CFC 12, HFC 134a, and HC 600a and to know how changes in UA(overall heat transfer coefficients$\times$ heat transfer area) of evaporator, the position displacement of compressor, and the rpm of fan in the freezing room which has influence on the cycle performance. The result shows that the quantitative values of simulation and experiment are not coincident, but their trend is similar. When HFC 134a and HC 600a were used without the change of design in refrigerator used CFC 12, the performance of system in HC 600a is 30% lower, and the case of HFC 134a is 10% lower than that of CFC 12 on freezing temperature.

  • PDF

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors (이중 FBG 광섬유센서를 이용한 구조물 가속도 및 기울기 측정 장치에 관한 연구)

  • Lee, Geum-Suk;Ahn, Soo-Hong;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.

A Combined Rietveld Refinement on the Crystal Structure of a Magnetoelectric Aurivillius Phase $Bi_5Ti_3FeO_{15}$ Using Neutron and X-ray Powder Diffractions

  • Ko, Tae-Gyung;Jun, Chang-Ho;Lee, Jeong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.341-347
    • /
    • 1999
  • An ambiguity on the correct room temperature structure of $Bi_5Ti_3FeO_{15}$ was resolved using a combined Rietveld refinement of neutron and X-ray diffraction. The structure of this compound has been reported to have a space group of F2mm (adopting 2-fold rotation symmetry along the c-axis) or A21am. However, our diffraction, study reveals that some reflections would violate F-centering and confirm that the belong to $A2_1$am. Out refinement with the space group of $A2_1$am converged at $R_p=6.85%, R_wp=9.23%$ and $\chi^2$=1.66 for an isotropic temperature model with 85 variables. The lattice constants are a=5.4677(1) $\AA$, b=5.4396(1) $\AA$, and c=41.2475(8)$\AA$. In structure, Ti/Fe atoms at the oxygen octahedral sites of the perovskite unit are completely disordered, resulting in that these atoms are transparent in neutron diffraction. The octahedra of the perovskite unit are relatively displaced along the a-axis against the Bi atoms, which contribute as a major component to the spontaneous polarization of $Bi_5Ti_3FeO_{15}$.

  • PDF

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Two Dissimilar Isotropic Bi-Materials (두 상이한 등방성 이종재료용 동적 광탄성 하이브리드법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok;Gwon, O-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.434-442
    • /
    • 2001
  • When the interfacial crack of two dissimilar isotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid method developed in this research are valid. Separating method of stress component is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 80∼85% (in case of aluminum, 24.3∼25.9%) of Rayleigh wave velocity of epoxy resin. The near-field stress components of crack-tip are similar with those of pure isotropic material under static or dynamic loading, but very near-field stress components of crack-tip are different from those.

The Distal Filling Effects on Hip Jont Function in Cementless Total Hip Replacement (인공 고관절 대치술에서 무시멘트형 스템의 원위부 압박이 고관철 성능에 미치는 영향)

  • 채수원;박상석;박재원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2777-2785
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The intial stability has close relationship with the relative displacement of prosthessis and sponge bone at the proximal of femur. After implantation of the proshesis, the surrounding bone is partially shielded from load carrying and starts to resorb. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems. Three types of stems empolyed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads

  • Hjaji, Mohammed A.;Mohareb, Magdi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.787-813
    • /
    • 2014
  • Starting with Hamilton's variational principle, the governing field equations for the steady state response of thin-walled beams under harmonic forces are derived. The formulation captures shear deformation effects due to bending and warping, translational and rotary inertia effects and as well as torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist of four coupled differential equations in the unknown displacement field variables. A general closed form solution is then developed for the coupled system of equations. The solution is subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A super-convergent finite element is then formulated based on the exact shape functions. Key features of the element developed include its ability to (a) isolate the steady state response component of the response to make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present solution are found to be in excellent agreement with those based on finite element solutions at a small fraction of the computational and modelling cost involved.