• 제목/요약/키워드: displacement component

검색결과 273건 처리시간 0.024초

Displacement aging component-based stability analysis for the concrete dam

  • Huang, Xiaofei;Zheng, Dongjian;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.241-246
    • /
    • 2018
  • The displacement monitoring data series reconstruction method was developed under equal water level effects based on displacement monitoring data of concrete dams. A dam displacement variation equation was set up under the action of temperature and aging factors by optimized analysis techniques and then the dam displacement hydraulic pressure components can be separated. Through the dynamic adjustment of temperature and aging effect factors, the aging component isolation method of dam displacement was developed. Utilizing the isolated dam displacement aging components, the dam stability model was established. Then, the dam stability criterion was put forward based on convergence and divergence of dam displacement aging components and catastrophe theory. The validity of the proposed method was finally verified combined with the case study.

모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정 (Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique)

  • 김성완;장성진;김남식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint

  • Xue, Jianyang;Dong, Jinshuang;Sui, Yan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.409-419
    • /
    • 2017
  • In order to analyze the vibration control effect of viscous damper in the concrete archaized buildings with lintel-column joints under seismic action, 3 specimens were tested under dynamic excitation. Two specimens with viscous damper were defined as the controlled component and one specimen without viscous damper was specified as the non-controlled component. The loading process and failure patterns were obtained from the test results. The failure characteristics, skeleton curves and mechanical behavior such as the load-displacement hysteretic loops, load carrying capacity, degradation of strength and rigidity, ductility and energy dissipation of the joints were analyzed. The results indicate that the load-bearing capacity of the controlled component is significantly higher than that of the non-controlled component. The former component has an average increase of 27.4% in yield load and 22.4% in ultimate load, respectively. Meanwhile, the performance of displacement ductility and the ability of energy dissipation for the controlled component are superior to those of the non-controlled component as well. Compared with non-controlled component, equivalent viscous damping coefficients are improved by 27.3%-30.8%, the average increase is 29.0% at ultimate load for controlled component. All these results reflect that the seismic performance of the controlled component is significantly better than that of the non-controlled component. These researches are helpful for practical application of viscous damper in the concrete archaizing buildings with lintel-column joints.

Further seismic displacement PSDF results

  • Morales, C.A.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.663-666
    • /
    • 2010
  • The spectral content of ground displacement of the 10 largest last California earthquakes is studied. Specifically, the power spectral density function of the critical horizontal-component record of the closest-to-epicenter station is analyzed in each case. The results permit to state that horizontal ground displacement is a narrow-band process. This fact was previously noticed while trying to solve the large-base-displacement problem in isolated structures and it was fundamental in the solution of this issue; however, these preliminary results were limited in number to enable a statement like the foregoing one. Thus, the broader results presented herein were necessary.

혼합모드 하중 하에서 균열닫힘 평가에 대한 K$_{op}$와 U의 결정과 적용 (Determination and Applications of U and K$_{op}$ for Crack Closure Evaluation under Mixed-mode loading)

  • 송삼홍;서기정;이정무
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.178-185
    • /
    • 2005
  • Crack tip displacement is originated by tensile stress component, s and shear stress component, t on pure Mode I and pure Mode II. The crack tip displacement(CTD) depends on combined types of different two stress components under mixed-mode loading conditions (MMLC). Thus, the analysis of crack tip displacement must be CTD vector, dv which is composition of ds and dt under MMLC. In this paper, various effects of MMLC on the crack closure are studied experimentally. The crack closure magnitude is calculated from the information of crack tip displacement under MMLC. This information has been obtained from the high resolution optical microscope in direct observations of crack displacement behavior at the crack tip. Observed crack tip displacement is analyzed by using CTD vector to determine crack opening load. The various effects of MMLC on the crack closure are explained using crack opening ratio with crack length and mode mixture. The effective stress intensity factor considering crack closure is also discussed.

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

직교 이방성체의 동적 응력확대계수에 관한 연구(I) (A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I))

  • 이광호;황재석;최선호
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

홀로그래피 간섭계를 이용한 미소변위 측정 (Small Displacement Measurement by Holographic Interferometry)

  • 이해중;황운봉;박현철
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.864-872
    • /
    • 1992
  • 본 연구에서는 이중노출 홀로그래피 간섭계의 원리를 이용하여 임의의 2차원 적 변형에 있어서 면외 변위와 면변위(in-plane displacement) 각각에 대한 홀로그램 을 제작하고 이를 컴퓨터에 입력하여 간섭무늬를 해석함으로써 변위와 변형률의 정량 화를 시도하였다.

유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구 (A Study on Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer)

  • 이민수;조용래;윤홍수;안경관
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.49-56
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.