• 제목/요약/키워드: displacement attenuation

검색결과 38건 처리시간 0.018초

경상분지에서의 수직변위값에 대한 최대 스펙트럼 진폭의 감쇠 (Attenuation of Peak Spectral Amplitude for the Vertical Displacement in the Kyungsang Basin)

  • 김성균
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.45-51
    • /
    • 1999
  • The attenuations of peak vertical displacements are studies using a conventional least squeare regression technique for microearthquakes occurred in the Kyungsang Basin southeastern Korea. The regression model applied to bandpass-fitered ground motion data includes parameters to account for geometric spreading anelastic attenuation depending on frequency source size and station site effects. Thirty nine displacement traces obtained by integrating velocity records for six shallow local microearthquakes are used to determine attenuation characteristics in the Basin. The regression result of the peak amplitude data leads to Q(f)=59.9 {{{{ {f }^{0.955 } }} for 1.5Hz$\leq$ f $\leq$ 25 Hz. It appears that the anelastic attenuation in the Kyungsang Basin is greater than that in the Western North America Area.

  • PDF

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

Theoretical and numerical analysis of bandgap characteristics and vibration attenuation of metaconcrete

  • En Zhang;Hai-Xiang Zhao;Guo-Yun Lu;Peng-Cheng Chen;Hui-Wei Yang
    • Computers and Concrete
    • /
    • 제34권5호
    • /
    • pp.519-534
    • /
    • 2024
  • Metaconcrete is a relatively new concept of concrete where traditional aggregates are partially replaced by resonant aggregates which consist of solid core coated with a relatively soft material. In this research, a mass-spring-mass analytical simplified model is used to predict the bandgap characteristics of metaconcrete firstly, then the bandgap characteristics of metaconcrete unit cell are numerically investigated by using finite element software COMSOL Multiphysics, the numerical model is built and verified by the analytical solution in terms of predicting bandgap frequency region. The effect of the parameters such as the modulus of coating, the density and radius of heavy core and resonant aggregate volume fraction on the characteristics of bandgap are studied based on validated finite element model. The vibration attenuation property of metaconcrete slab is studied by using the finite element code LS-DYNA and the effect of the parameters such as the modulus of coating, the density and radius of heavy core and resonant aggregate volume fraction. Metaconcrete slab exhibit prominent vibration attenuation capacity in the predicted bandgap. Finally, a frequency sweeping experiment is carried out to verify the theoretical model. The experimental results show that metaconcrete specimens exhibit excellent vibration attenuation ability in the predicting bandgap. The results can be used for designing engineered aggregates for better structural protection.

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata;Himanshi, Himanshi
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.395-403
    • /
    • 2022
  • The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.

국내 재해도에 상응하는 공동구의 지반변위 산정 (Hazard-Consistent Ground Displacement Estimation for Seismic Input of Underground Utility Tunnels in Korea)

  • 김대환;임영우;정연하;이혜린
    • 한국지반공학회논문집
    • /
    • 제37권12호
    • /
    • pp.7-23
    • /
    • 2021
  • 전력, 통신, 상수, 난방, 중수 등의 공급망을 구성하는 지하공동구는 도시기능을 유지하기 위한 핵심 기간망이며, 재난 및 재해로 서비스의 정지 및 일시적 중단이 발생하는 경우 대규모 사회경제적 손실을 가져온다. 본 연구에서는 지중구조물에 대한 개선된 내진설계 및 평가를 위하여 국내 지진환경에 부합하는 지진원 스펙트럼으로부터 대상 지반의 증폭 및 감쇠 효과를 반영한 시나리오 지진에 기반한 지반변위 예측 방법을 제시하였다. 코사인법으로 통용되는 기존의 단순화 가정법 및 지반응답해석과의 비교를 통해서 본 연구가 제시하는 재해도에 상응하는 지반변위 산정방법이 합리적이며 공학 실무에서 충분히 적용 가능한 것을 확인하였다.

Influence of structure coupling effect on damping coefficient of offshore wind turbine blades

  • Zhang, Jianping;Gong, Zhen;Li, Haolin;Wang, Mingqiang;Zhang, Zhiwei;Shi, Fengfeng
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.431-440
    • /
    • 2019
  • The aim of this study was to explore the influence of structure coupling effect on structural damping of blade based on the blade vibration characteristic. For this purpose, the scaled blade model of NREL 5 MW offshore wind turbine was processed and employed in the wind tunnel test to validate the reliability of theoretical and numerical models. The attenuation curves of maximum displacement and the varying curves of equivalent damping coefficient of the blade under the rated condition were respectively compared and analyzed by constructing single blade model and whole machine model. The attenuation law of blade dynamic response was obtained and the structure coupling effect was proved to exert a significant influence on the equivalent damping coefficient. The results indicate that the attenuation trend of the maximum displacement response curve of the single blade varies more obviously with the increase of elastic modulus as compared to that under the structure coupling effect. In contrast to the single blade model, the varying curve of equivalent damping coefficient with the period is relatively steep for the whole machine model. The findings are of great significance to guide the structure design and material selection for wind turbine blades.

적층내 탄성 유도초음파의 모드 특성에 관한 연구 (A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures)

  • 조윤호;이종명
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.211-216
    • /
    • 2008
  • 이 연구에서 다층구조물에서 각 모드에 대한 위상속도, 군속도, 감쇠 그리고 파형구조를 구하는 프로그램을 개발하였다. 판의 수와 재료 물성치를 변화시키면서 각 모드의 파형구조를 얻었다. 유체가 닿아 있는 구조물에서 유도파를 이용한 비파괴 검사의 성공여부는 에너지 손실을 최소화하는 모드선정의 최적화이다. 이 연구에서는 자유표면판재의 표면에서 정규화된 두께방향의 변위가 감쇠의 변화를 예측하기 위해서 사용되었으며 감쇠와 파형구조의 관계를 밝혔다. 이것은 유도파의 감쇠를 물이 닿아 있는 경우 복소수근을 찾는 수학적 어려움을 경감하면서 자유표면에서 두께방향 변위의 변화로부터 손쉽게 얻을 수 있다. 이 연구를 통하여 다층구조물에서 보다 민감하고 효율적인 비파괴 검사를 위한 유도파의 모드선정의 최적화 개념을 완성했다.

도파관 이론을 이용한 고체소음 전달해석 (Attenuation of Structureborne Noise Using Wave Guide Theory)

  • 김석원;김재승;김극천
    • 대한조선학회지
    • /
    • 제27권2호
    • /
    • pp.78-86
    • /
    • 1990
  • 본 연구에서는 도파관 이론을 이용하여 선체구조를 대상으로 고체 소음의 전달 손실 문제를 다루었다. 선체를 음향 도파관 계로 모형화 할 때, 단면 모드는 해당계의 경계조건 즉 늑골에서의 구속조건에 의해 결정된다. 본 논문에서는 이와 같은 구속조건을 완화시켜 단면 모드를 조절할 경우, 도파관 이론이 저주파수 영역에 대하여도 계측치와 비교적 일치하는 결과를 주고 있음을 확인하였으며, 동시에 국부 요소의 질량과 감쇠의 변화가 고체소음의 전달손실에 미치는 영향을 살펴보았다.

  • PDF

맥동흡수용 유압필터에 의한 유압전동장치의 압력맥동 감쇠 (Pressure Ripple Reduction in Hydrostatic Transmissions by Using a Hydraulic Filter)

  • 김도태
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.33-38
    • /
    • 2002
  • This paper deals with pressure ripple attenuation far separated-type Hydrostatic Transmission (HST) consisting ova variable axial piston pump connected in an open loop to a fried displacement axial piston motor. Pressure ripples in HST is major source of vibration which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube tripe hydraulic filter is proposed to attenuate pressure ripples with the high frequencies components to achieve better noise reduction in HST. The basic principle of a hydraulic filter is allied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimentally shown that the hydraulic filter attenuates about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and provide a means of designing a quieter HST.

내리막 달리기의 충격 쇼크와 신체 관절의 운동학적 특징 (Impact shock and kinematic characteristics of the lower extremity's joint during downhill running)

  • 류지선
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.117-129
    • /
    • 2005
  • The purpose of this study was to characterize the impact shock wave and its attenuation, and the kinematic response of the lower extremity's joints to the impact shock during downhill running in which the lower extremity's extensor acts dominantly. For this study, fifteen subjects(mean age:$27.08{\pm}4.39$; mass:$76.30{\pm}6.60$; height:$177.25{\pm}4.11$) were required to run on the 0% grade treadmill and downhill grades of 7%, and 15% in random at speed of their preference. When the participant run, acceleration at the tibia and the sacrum and kinematic data of the lower extremity were collected for 20s so as to provide at least 5 strides for analysis at each grade. Peak impact accelerations were used to calculate shock attenuation between the tibia and sacrum in time domain at each grade. Fast Fourier transformation(FFT) and power spectral density(PSD) techniques were used to analyze impact shock factors and its attenuation in the frequency domain. Joint coordinate system technique was used to compute angular displacement of the ankle and knee joint in three dimension. The conclusions were drawn as fellows: 1. Peak impact accelerations of the tibia and sacrum in downhill run were greater than that of 0% grade run, but no significant between conditions. Peak shock of PSD resembled also in pattern of peak impact acceleration. The wave of impact shock attenuation between the tibia and sacrum decreased with increasing grade, but didn't find a significant difference between grade conditions. 2. Adduction/abduction, flexion/extention, and internal/external rotation of the ankle and knee joints at support phase between grade conditions didn't make much difference. 3. At grade of 7% and 15%, there were relationship between the knee of the flexion/extension movement and peak impact acceleration during heel strike and found also it in the ankle of plantar/dorsiflexion at grade of 15%.