DOI QR코드

DOI QR Code

Theoretical and numerical analysis of bandgap characteristics and vibration attenuation of metaconcrete

  • En Zhang (College of Civil Engineering, Taiyuan University of Technology) ;
  • Hai-Xiang Zhao (College of Civil Engineering, Taiyuan University of Technology) ;
  • Guo-Yun Lu (College of Civil Engineering, Taiyuan University of Technology) ;
  • Peng-Cheng Chen (College of Civil Engineering, Taiyuan University of Technology) ;
  • Hui-Wei Yang (College of Civil Engineering, Taiyuan University of Technology)
  • Received : 2022.10.04
  • Accepted : 2024.01.15
  • Published : 2024.11.25

Abstract

Metaconcrete is a relatively new concept of concrete where traditional aggregates are partially replaced by resonant aggregates which consist of solid core coated with a relatively soft material. In this research, a mass-spring-mass analytical simplified model is used to predict the bandgap characteristics of metaconcrete firstly, then the bandgap characteristics of metaconcrete unit cell are numerically investigated by using finite element software COMSOL Multiphysics, the numerical model is built and verified by the analytical solution in terms of predicting bandgap frequency region. The effect of the parameters such as the modulus of coating, the density and radius of heavy core and resonant aggregate volume fraction on the characteristics of bandgap are studied based on validated finite element model. The vibration attenuation property of metaconcrete slab is studied by using the finite element code LS-DYNA and the effect of the parameters such as the modulus of coating, the density and radius of heavy core and resonant aggregate volume fraction. Metaconcrete slab exhibit prominent vibration attenuation capacity in the predicted bandgap. Finally, a frequency sweeping experiment is carried out to verify the theoretical model. The experimental results show that metaconcrete specimens exhibit excellent vibration attenuation ability in the predicting bandgap. The results can be used for designing engineered aggregates for better structural protection.

Keywords

Acknowledgement

This work was financially supported by National Natural Science Foundation of China (No. 12172244) and Natural Science Foundation of Shanxi Province of China (No. 201901D111089, No. 202103021223105, No. 202203021212256).

References

  1. Briccola, D. and Pandolfi, A.(2021), "Analysis on the dynamic wave attenuation properties of metaconcrete considering a quasi-random arrangement of inclusions", Front. Mater., 7, 615189. https://doi.org/10.3389/fmats.2020.615189.
  2. Briccola, D., Ortiz, M. and Pandolfi, A.(2017), "Experimental validation of metaconcrete blast mitigation properties", J. Appl. Mech., 84(3), 031001. https://doi.org/10.1115/1.4035259.
  3. Bui, Q.D., Bai, X.X. and Nguyen, Q.H. (2021) , "Dynamic modeling of MR dampers based on quasi-static model and Magic Formula hysteresis multiplier", Eng. Struct., 245(15), 112855. https://doi.org/ 10.1016/j.engstruct.2021.112855.
  4. Gao, Y.J., Fan, H.L. and Zhang, B. (2018), "Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave", J. Vib. Shock., 37(20), 39-44. https://doi.org/10.13465/j.cnki.jvs.2018.20.006.
  5. Hu, J., Yu, T.X. and Yin, S. ( 2019), "Low-speed impact mitigation of recoverable DNA inspired double helical metamaterials", Int. J. Mech. Sci., 161, 105050. https://doi.org/10.1016/j.ijmecsci.2019.105050.
  6. Jin, H.X., Chen, W.S. and Hao, H. (2020b), "Numerical study on impact resistance of metaconcrete (in Chinese)", Sci. Sin Phys. Mech. Astron., 50, 024609. https://doi.org/10.1360/SSPMA-2019-0183.
  7. Jin, H.X., Hao, H. and Hao, Y.F. (2020a), "Predicting the response of locally resonant concrete structure under blast load", Constr. Build. Mater., 252, 118920. https://doi.org/10.1016/j.conbuildmat.2020.118920.
  8. Kettenbeil, C. and Ravichandran, G.(2018), "Experimental investigation of the dynamic behavior of metaconcrete", Int. J. Impact. Eng., 111, 199-207. https://doi.org/10.1016/j.ijimpeng.2017.09.017.
  9. Liu, Y., An, X.Y. and Chen H.L.(2021), "Vibration attenuation of finite-size metaconcrete: Mechanism, prediction and verification", Compos. Part A: Appl. Sci. Manuf., 143, 106294. https://doi.org/10.1016/j.compositesa.2021.106294.
  10. Liu, Y., Shi, D.Y. and He, H.G. (2022), "Double-resonator based metaconcrete composite slabs and vibration attenuation mechanism", Eng. Struct., 262, 114392. .https://doi.org/10.1016/j.engstruct.2022.114392.
  11. Liu, Z., Zhang, X. and Mao, Y. (2000), "Locally resonant sonic materials", Sci., 289(5485), 1734-1736. https://doi.org/10.1126/science.289.5485.1734.
  12. Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2014), "Metaconcrete: Designed aggregates to enhance dynamic performance", J. Mech. Phys. Solid., 65, 69-81. https://doi.org/10.1016/j.jmps.2014.01.003.
  13. Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2015), "Investigation of elastic wave transmission in a metaconcrete slab", Mech. Mater., 91(1), 295-303. https://doi.org/10.1016/j.mechmat.2015.08.004.
  14. Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2016), "Effect of brittle fracture in a metaconcrete slab under shock loading", J. Eng. Mech., 142(4), 04016010. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001034.
  15. Oyelade, A.O., Abiodun, Y.O. and Sadiq, M.O. (2018), "Dynamic behaviour of concrete containing aggregate resonant frequency", J. Comput. Appl. Mech., 49(2), 175-180. https://doi.org/10.22059/jcamech.2018.269048.339.
  16. Tan, S.H., Poh, L.H. and Tkalich, D. (2019), "Homogenized enriched model for blast wave propagation in metaconcrete with viscoelastic compliant layer", Int. J. Numer. Meth. Eng., 119(13), 1395-1418. https://doi.org/10.1002/nme.6096.
  17. Vo, N.H., Pham, T. and Bi, K. (2021a), "Stress wave mitigation properties of dual-meta panels against blast loads", Int. J. Impact. Eng., 154, 103877. https://doi.org/10.1016/j.ijimpeng.2021.103877.
  18. Vo, N.H., Pham, T. and Bi, K. (2021b), "Model for analytical investigation on meta-lattice truss for low-frequency spatial wave manipulation", Wave. Motion., 103, 102735. https://doi.org/10.1016/j.wavemoti.2021.102735.
  19. Weber, F., Borchsenius, F. and Distl, J. (2022), "Performance of numerically optimized tuned mass damper with inerter (TMDI)", Appl. Sci., 12(12), 6204. https://doi.org/10.3390/app12126204.
  20. Xu, C., Chen, W.S. and Hao, H. (2020), "The influence of design parameters of engineered aggregate in metaconcrete on bandgap region", J. Mech. Phys. Solid., 139, 103929. https://doi.org/10.1016/j.jmps.2020.103929.
  21. Xu, C., Chen, W.S. and Hao, H. (2021a), "Effect of engineered aggregate configuration and design on stress wave attenuation of metaconcrete rod structure", Int. J. Solids. Struct., 232, 111182. https://doi.org/10.1016/j.ijsolstr.2021.111182.
  22. Xu, C., Chen, W.S. and Hao, H. (2021b), "Damping properties and dynamic responses of metaconcrete beam structures subjected to transverse loading", Constr. Build. Mater., 311, 125273. https://doi.org/10.1016/j.conbuildmat.2021.125273.
  23. Xu, C., Chen, W.S. and Hao, H. (2022), "Experimental and numerical assessment of stress wave attenuation of metaconcrete rods subjected to impulsive loads", Int. J. Impact. Eng., 159, 104052. https://doi.org/10.1016/j.ijimpeng.2021.104052.
  24. Zhang, E., Lu G.Y. and Yang H.W. (2020), "Band gap features of metaconcrete and shock wave attenuation in it", Explos. Shock Waves, 40(6), 063301-1. https://doi.org/10.11883/bzycj-2019-0252.