Acknowledgement
This work was financially supported by National Natural Science Foundation of China (No. 12172244) and Natural Science Foundation of Shanxi Province of China (No. 201901D111089, No. 202103021223105, No. 202203021212256).
References
- Briccola, D. and Pandolfi, A.(2021), "Analysis on the dynamic wave attenuation properties of metaconcrete considering a quasi-random arrangement of inclusions", Front. Mater., 7, 615189. https://doi.org/10.3389/fmats.2020.615189.
- Briccola, D., Ortiz, M. and Pandolfi, A.(2017), "Experimental validation of metaconcrete blast mitigation properties", J. Appl. Mech., 84(3), 031001. https://doi.org/10.1115/1.4035259.
- Bui, Q.D., Bai, X.X. and Nguyen, Q.H. (2021) , "Dynamic modeling of MR dampers based on quasi-static model and Magic Formula hysteresis multiplier", Eng. Struct., 245(15), 112855. https://doi.org/ 10.1016/j.engstruct.2021.112855.
- Gao, Y.J., Fan, H.L. and Zhang, B. (2018), "Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave", J. Vib. Shock., 37(20), 39-44. https://doi.org/10.13465/j.cnki.jvs.2018.20.006.
- Hu, J., Yu, T.X. and Yin, S. ( 2019), "Low-speed impact mitigation of recoverable DNA inspired double helical metamaterials", Int. J. Mech. Sci., 161, 105050. https://doi.org/10.1016/j.ijmecsci.2019.105050.
- Jin, H.X., Chen, W.S. and Hao, H. (2020b), "Numerical study on impact resistance of metaconcrete (in Chinese)", Sci. Sin Phys. Mech. Astron., 50, 024609. https://doi.org/10.1360/SSPMA-2019-0183.
- Jin, H.X., Hao, H. and Hao, Y.F. (2020a), "Predicting the response of locally resonant concrete structure under blast load", Constr. Build. Mater., 252, 118920. https://doi.org/10.1016/j.conbuildmat.2020.118920.
- Kettenbeil, C. and Ravichandran, G.(2018), "Experimental investigation of the dynamic behavior of metaconcrete", Int. J. Impact. Eng., 111, 199-207. https://doi.org/10.1016/j.ijimpeng.2017.09.017.
- Liu, Y., An, X.Y. and Chen H.L.(2021), "Vibration attenuation of finite-size metaconcrete: Mechanism, prediction and verification", Compos. Part A: Appl. Sci. Manuf., 143, 106294. https://doi.org/10.1016/j.compositesa.2021.106294.
- Liu, Y., Shi, D.Y. and He, H.G. (2022), "Double-resonator based metaconcrete composite slabs and vibration attenuation mechanism", Eng. Struct., 262, 114392. .https://doi.org/10.1016/j.engstruct.2022.114392.
- Liu, Z., Zhang, X. and Mao, Y. (2000), "Locally resonant sonic materials", Sci., 289(5485), 1734-1736. https://doi.org/10.1126/science.289.5485.1734.
- Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2014), "Metaconcrete: Designed aggregates to enhance dynamic performance", J. Mech. Phys. Solid., 65, 69-81. https://doi.org/10.1016/j.jmps.2014.01.003.
- Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2015), "Investigation of elastic wave transmission in a metaconcrete slab", Mech. Mater., 91(1), 295-303. https://doi.org/10.1016/j.mechmat.2015.08.004.
- Mitchell, S.J., Pandolfi, A. and Ortiz, M. (2016), "Effect of brittle fracture in a metaconcrete slab under shock loading", J. Eng. Mech., 142(4), 04016010. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001034.
- Oyelade, A.O., Abiodun, Y.O. and Sadiq, M.O. (2018), "Dynamic behaviour of concrete containing aggregate resonant frequency", J. Comput. Appl. Mech., 49(2), 175-180. https://doi.org/10.22059/jcamech.2018.269048.339.
- Tan, S.H., Poh, L.H. and Tkalich, D. (2019), "Homogenized enriched model for blast wave propagation in metaconcrete with viscoelastic compliant layer", Int. J. Numer. Meth. Eng., 119(13), 1395-1418. https://doi.org/10.1002/nme.6096.
- Vo, N.H., Pham, T. and Bi, K. (2021a), "Stress wave mitigation properties of dual-meta panels against blast loads", Int. J. Impact. Eng., 154, 103877. https://doi.org/10.1016/j.ijimpeng.2021.103877.
- Vo, N.H., Pham, T. and Bi, K. (2021b), "Model for analytical investigation on meta-lattice truss for low-frequency spatial wave manipulation", Wave. Motion., 103, 102735. https://doi.org/10.1016/j.wavemoti.2021.102735.
- Weber, F., Borchsenius, F. and Distl, J. (2022), "Performance of numerically optimized tuned mass damper with inerter (TMDI)", Appl. Sci., 12(12), 6204. https://doi.org/10.3390/app12126204.
- Xu, C., Chen, W.S. and Hao, H. (2020), "The influence of design parameters of engineered aggregate in metaconcrete on bandgap region", J. Mech. Phys. Solid., 139, 103929. https://doi.org/10.1016/j.jmps.2020.103929.
- Xu, C., Chen, W.S. and Hao, H. (2021a), "Effect of engineered aggregate configuration and design on stress wave attenuation of metaconcrete rod structure", Int. J. Solids. Struct., 232, 111182. https://doi.org/10.1016/j.ijsolstr.2021.111182.
- Xu, C., Chen, W.S. and Hao, H. (2021b), "Damping properties and dynamic responses of metaconcrete beam structures subjected to transverse loading", Constr. Build. Mater., 311, 125273. https://doi.org/10.1016/j.conbuildmat.2021.125273.
- Xu, C., Chen, W.S. and Hao, H. (2022), "Experimental and numerical assessment of stress wave attenuation of metaconcrete rods subjected to impulsive loads", Int. J. Impact. Eng., 159, 104052. https://doi.org/10.1016/j.ijimpeng.2021.104052.
- Zhang, E., Lu G.Y. and Yang H.W. (2020), "Band gap features of metaconcrete and shock wave attenuation in it", Explos. Shock Waves, 40(6), 063301-1. https://doi.org/10.11883/bzycj-2019-0252.