• Title/Summary/Keyword: dispersive

Search Result 1,835, Processing Time 0.032 seconds

Intermetallic Compounds Growth in the Interface between Sn-based Solders and Pt During Aging (시효처리에 따른 Cu를 포함하는 Sn계 무연솔더와 백금층 사이의 금속간화합물 성장)

  • Kim Tae-Hyun;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.23-30
    • /
    • 2004
  • Interfacial reaction of Pb-free $Sn0.7wt{\%}Cu$ and $Sn3.8wt{\%}Ag0.7wt{\%}Cu$ solders and Pt during aging has been investigated. After the $Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$ specimens were reflowed at $250^{\circ}C$ for 30s and the $Sn0.7wt{\%}Cu/Pt$ specimens were reflowed at $260^{\circ}C$, the specimens were aged at $125^{\circ}C,\;150^{\circ}C$ and $170^{\circ}C$ for 25-121 hours. The intermetallic thitkness and morphology change during aging were characterized using SEM, EDS and XRD. $PtSn_4$ and $PtSn_2$ were observed in the solder/pt interface and the intermetallic formation was governed by diffusion. The activation energy of intermetallic formation was 145.3 kJ/mol for$Sn3.8wt{\%}Ag0.7wt{\%}Cu/Pt$ specimens for $Sn0.7wt{\%}Cu/Pt$ specimens from the measurement of the intermetallic thickness with aging temperature and time.

  • PDF

Effect of deposition pressure on the morphology of TiO2 nanoparticles deposited on Al2O3 powders by pulsed laser deposition (펄스레이저 증착법에 의한 Al2O3 입자 표면 위 TiO2 나노입자의 코팅)

  • Choi, Bong Geun;Kim, So Yeon;Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.167-172
    • /
    • 2013
  • Titanium dioxides nanoparticles coated aluminum oxide powders were fabricated by pulsed laser deposition (PLD) with Nd : YAG laser at 266 nm. The Pulse laser energy is 100 mJ/pulse. During the irradiation of the focused laser on the $TiO_2$ target, Ar gas is supplied into the chamber. The gas pressure is varied in a range of $1{\times}10^{-2}$ to 100 Pa. Titanium dioxides nanoparticles deposited aluminum oxide powders were characterized by using energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HR-TEM), in order to understand the effect of Ar background gas on surface morphology and properties of the powders. The coated $TiO_2$ nanoparticles had nanosized spherical shape and the crystallite sizes of 10~30 nm. The morphology of coated $TiO_2$ nanoparticles is not affected by gas pressure. However, the particle size and crystallinity slightly increased with the increase of gas pressure. According to this technique, the size and crystallinity of nanoparticles can be easily controlled by controlling pressure during the laser irradiation.

Preparation and Photosensitivity of Ag-Multi Walled Carbon Nanotube-TiO2 Nano Composite (Ag-Multi walled carbon nanotube-TiO2 복합나노소재 제조 및 광감응성)

  • Kim, Sung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2016
  • $MWCNT-TiO_2$ nano composites and $Ag-MWCNT-TiO_2$ nano composites were prepared from Multi-Walled Carbon NanoTube (MWCNT), titanium (IV) butoxide (TNB) solution and silver nitrate ($AgNO_3$) by the sol-gel method. The dispersion and structure of Ag in the synthesized composites was observed by Scanning Electron Microscopy (SEM) and Field Emission Transmission Electron Microscopy (FE-TEM). X-Ray Diffraction (XRD) patterns of the composites showed that the composites contained an anatase phase. The Energy Dispersive X-ray spectroscopy (EDX) showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the MWCNT network, and Ag particles were virtually fixed on the surface of the tubes. Also decomposition of the methylene blue was investigated according to UV radiation times for study photocatalytic activity. $Ag-MWCNT-TiO_2$ nano composites show high photodegradation than $MWCNT-TiO_2$ nano composites. The results indicate that the high conductivity of Ag improved the photoactivity of the $MWCNT-TiO_2$ composite.

Periodontally Diseased Root and Normal Root as Studied by Electron Probe Microanalysis & SEM (정상 치근과 치주질환에 이환된 치근면의 Electron Probe Microanalysis와 주사전자 현미경에 의한 연구)

  • Kim, Jong-Sig;Kim, Chong-Yeo;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.401-415
    • /
    • 1999
  • Root surfaces affected by periodontal disease undergo various forms of changes. Cementum exposure from gingival recession may result in absorption of calcium, phosphorus, and fluoride and subsequent hypermineralization and increased radiodensity. Although some reports have suggested that inorganic content with root cementum might show various changes depending upon age or extent of periodontal disease, but no consensus can be reached regarding the the distribution of various elements. The present study examines the difference in mineral content between healthy and periodontal diseased roots by analyzing three areas per tooth along the root surface in cervico-apical direction using electron probe and scanning electron microscope. Healthy tooth that was extracted for orthodontic purpose was used as control. Experimental teeth include those with periodontal pocket depth exceeding 6mm and those with gingival recession and periodontal pocket depth of 2-4mm. Levels of Ca, P, Mg and Na were measured using wavelength dispersive x-ray spectrometer at three areas per tooth. The examined areas were located apical to cemento-enamel junction in control and periodontal ligament-depleted areas in experimental teeth. The corresponding areas were also examined with scanning electron microscope(x70) The results are as follows. 1. Minerals were detected in order of Ca, P, Mg and Na. In all root surfaces, levels of Ca and P were higher in dentin than in cementum. 2. Level of Mg was twice as high in dentin than in cementum. There was no significant difference in the level of Mg and Na between normal and periodontal diseased roots or between the various locations in the same root. 3. Level of Ca and P in the surface cementum showed no difference between normal and periodontal diseased root, although the areas in dentin with high level of either ion also showed high level of corresponding ion in cementum. 4. Difference in the Ca and P content between various locations within the same root was noted, although no coherent pattern existed. These results suggest that although the mineral content of the root cementum in periodontitis-affected tooth is affected by exogenous ions from saliva and food, but there was no difference in the mineral contents between normal and periodontally diseased root.

  • PDF

Effect of glass-infiltration treatments on the shear bond strength between zirconia and ultra low-fusing porcelain veneer (글라스 용융침투 처리가 지르코니아와 초저온 소성 도재와의 전단결합강도에 미치는 영향)

  • Yim, Eun-Kyung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.269-277
    • /
    • 2018
  • Purpose: This study examined the effects of glass infiltration treatments on the shear bond strength (SBS) between zirconia core and ultra low-fusing porcelain veneer. Materials and methods: The zirconia specimens were classified into 4 groups (n = 12): Untreated zirconia (group Z), zirconia coated ZirLiner (group ZL), glass-infiltrated zirconia (group ZG), glass-infiltrated and sandblasted zirconia (group ZGS). A cylinder of ultra low-fusing veneer porcelain was build up on each disk ($6mm{\times}3mm$). SBS was measured using a universal testing machine. Scanning electron microscope and Energy Dispersive X-ray spectroscopy were used to evaluate the surface of zirconia and failure pattern after SBS. Results: SBS value of group ZGS was significantly lower than that of other groups (P < .05). No significant differences were detected among group ZL, group Z and group ZG. Conclusion: Glass infiltration is not effective to the bond strength between zirconia and ultra low-fusing porcelain veneer. Sandblasting also dramatically decreased the bonding strength.

Elemental alteration of the surface of dental casting alloys induced by electro discharge machining (치과용 주조 합금의 방전가공에 따른 표면 성분 변화)

  • Jang, Yong-Chul;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Passive fitting of meso-structure and super-structures is a predominant requirement for the longevity and clinical success of osseointegrated dental implants. However, precision and passive fitting has been unpredictable with conventional methods of casting as well as for corrective techniques. Alternative to conventional techniques, electro discharge machining(EDM) is an advanced method introduced to dental technology to improve the passive fitting of implant prosthesis. In this technique material is removed by melting and vaporization in electric sparks. Regarding the efficacy of EDM, the application of this technique induces severe surface morphological and elemental alterations due to the high temperatures developed during machining, which vary between $10,000{\sim}20,000^{\circ}C$. The aim of this study was to investigate the morphological and elemental alterations induced by EDM process of casting dental gold alloy and non-precious alloy used for the production of implant-supported prosthesis. A conventional clinical dental casting alloys were used for experimental specimens patterns, which were divided in three groups, high fineness gold alloy(Au 75%, HG group), low fineness gold alloy(Au 55%, LG group) and nonprecious metal alloy(Ni-Cr, NP group). The UCLA type plastic abutment patterns were invested with conventional investment material and were cast in a centrifugal casting machine. Castings were sandblasted with $50{\mu}m\;Al_2O_3$. One casting specimen of each group was polished by conventional finishing(HGCON, LGCON, NPCON) and one specimen of each group was subjected to EDM in a system using Cu electrodes, kerosene as dielectric fluid in 10 min for gold alloy and 20 min for Ni-Cr alloy(HGEDM. LGEDM, NOEDM). The surface morphology of all specimens was studied under an energy dispersive X-ray spectrometer (EDS). The quantitative results from EDS analysis are presented on the HGEDM and LGEDM specimens a significant increase in C and Cu concentrations was found after EDM finishing. The different result was documented for C on the NPEDM with a significant uptake of O after EDM finishing, whereas Al, Si showed a significant decrease in their concentrations. EDS analysis showed a serious uptake of C and Cu after the EDM procedure in the alloys studied. The C uptake after the EDM process is a common finding and it is attributed to the decomposition of the dielectric fluid in the plasma column, probably due to the development of extremely high temperatures. The Cu uptake is readily explained from the decomposition of Cu electrodes, something which is also a common finding after the EDM procedure. However, all the aforementioned mechanisms require further research. The clinical implication of these findings is related with the biological and corrosion resistance of surfaces prepared by the EDM process.

  • PDF

Determining Effect of Oyster Shell on Cadmium Extractability and Mechanism of Immobilization in Arable Soil (농경지 토양에서 패화석에 의한 카드뮴의 용출성 및 부동화 기작 구명)

  • Hong, Chang-Oh;Noh, Yong-Dong;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2014
  • BACKGROUND: Oyster shell(OS) is alkaline with pH 9.8, porous, and has high concentration of $CaCO_3$. It could be used as an alternative of lime fertilizer to immobilize cadmium(Cd) in heavy metal contaminated arable soil. Therefore, this study has been conducted to compare effects of calcium(Ca) materials [OS and $Ca(OH)_2$] on Cd extractability in contaminated soil and determined mechanisms of Cd immobilization with OS. METHODS AND RESULTS: Both Ca materials were added at the rates of 0, 0.1, 0.2, 0.4, and 0.8% (wt Ca wt-1) in Cd contaminated soil and the mixtures were incubated at $25^{\circ}C$ for 4 weeks. Both Ca materials increased pH and negative charge of soil with increasing Ca addition and decreased 1N $NH_4OAc$ extractable Cd concentration. 0.1 N HCl extractable Cd concentration markedly decreased with addition of OS. 1 N $NH_4OAc$ extractable Cd concentration was related with pH and net negative charge of soil, but not with 0.1 N HCl extractable Cd concentration. We assumed that Cd immobilization with $Ca(OH)_2$ was mainly attributed to Cd adsorption resulted from increase in pH-induced negative charge of soil. Scanning electron microscope (SEM) images and energy dispersive spectroscopy(EDS) analyses were conducted to determine mechanism of Cd immobilization with OS. There was no visible precipitation on surface of both Ca materials. However, Cd was detected in innerlayer of OS by EDS analyses but not in that of $Ca(OH)_2$. CONCLUSION: We concluded that Cd immobilization with OS was different from that with $Ca(OH)_2$. OS might adsorbed interlayer of oyster shell or have other chemical reactions.

Surface Study on the Supported Molten Salt Catalyst (담지된 금속염 혼합물 촉매의 표면 연구)

  • Kim, Jong Pal;Lee, Kwang Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.381-385
    • /
    • 2009
  • A basic objective is the preparation and surface studies of supported molten salt catalysts because molten salts can stay as the liquid phase in the range of the ordinary reaction temperature. Many kinds of metal salt mixtures for the formation of molten salt phase are appliable but CuCl and KCl were selected in this study because Cu is considered catalytically reactive in many reactons. The loading of the molten salt was selected as 25 vol% of the total pore volume of ${\gamma}-alumina$ to provide reasonable exposed surface area. The surface structure of catalysts containing molten salts in the ${\gamma}-alumina$ was studied using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). CuCl and KCl were added into the ${\gamma}-alumina$ using concentrated hydrochloric acid solution by the impregnation technique. The surfaces of the prepared catalysts before and after heat treatments were compared and they suggested that the heat treatment of catalysts helped the formation of molten-salt although the surface compositions of CuCl and KCl were not uniform.

The Study of Fast X-ray Fluorescence Analysis Using a SSQ Program (SSQ 프로그램을 이용한 빠른 X-선형광분석법 고찰)

  • Park, Yong Joon
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.112-119
    • /
    • 1998
  • A Siemens SemiQuant (SSQ) 3000 program, a precalibrated 'standardless' analytical program handling up to 90 elements, was evaluated for the fast analysis of various types of reference materials using a wavelength dispersive X-ray spectrometer. Various types of standard reference materials such as metal discs, metal chips, and geological materials in powder form were analysed and it took 23 minutes of measuring time for 75 elements. Measurements of geological reference materials using different sampling methods were carried out and their data were interactively evaluated. The analysis of materials of a known matrix concentration such as stainless steels provided higher precision value compared to totally unknown samples. The analyses of materials prepared as pressed pellets or fused glass beads provided higher precision values compared to the measurement of loose powders with a foil on the sample surface and helium operation, though their sampling procedures were more complicate and took more time. Since very light elements such as boron, carbon, and oxygen have a strong influence on the matrix effects and also on the calculation of effective matrix corrections, the rhodium Compton check was applied to verify the reliability of the defined light element concentrations of light matrix materials and the defined major sample compounds. Failure of defining correct matrix resulted in an unoptimized matrix correction and therefore in the wrong calculation of the element concentration.

  • PDF

Biosorption of Heavy Metal in Aqueous Solution by Heavy Metal Tolerant Microorganism Isolated from Heavy Metal Contaminated Soil (중금속으로 오염된 토양에서 분리한 중금속 내성 미생물의 수용액내 중금속 흡착)

  • Kim, Sung-Un;Choi, Ik-Won;Seo, Dong-Cheol;Han, Myung-Hoon;Kang, Byung-Hwa;Heo, Jong-Soo;Shon, Bo-Kyoon;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2005
  • This study was conducted to find out a useful bioremediation technology for heavy metal contaminated soil and water. We isolated strain CPB from heavy metal contaminated soil and evaluated the tolerance level and adsorption capacity of strain CPB to heavy metals (Strain is not determined yet). Strain CPB showed variable tolerance limit to different kinds heavy metal or concentrations of heavy metals. The growth of strain CPB was significantly inhibited by mixed heavy metals (Cd+Cu+Pb+Zn) than that of by single heavy metal. Strain CPB showed high binding capacity with Pb (Pb>Cd>Cu>Zn). In general, strain CPB showed high uptake of heavy metals such as Pb, Cd and Cu. It was observed that the capacity of heavy metal uptake from mixture of heavy metals was reduced in comparison with single heavy metal treatment. But total contents of heavy metal bound with cell in mixed heavy metal showed higher than in single heavy metal treatment. Heavy metal adsorption in cells was affected by several external factors, such as temperature and pH etc.. The optimum temperature and pH of the adsorption of heavy metal into cells were ca. $25{\sim}35^{\circ}C$ and pH ca. $5{\sim}7$, respectively. A large number of the electron dense particles were found mainly on the cell wall and cell membrane fractions, which was determined by transmission electron microscope. Energy dispersive X-ray spectroscopy revealed that the electron dense particles were the heavy metal complexes the substances binding with heavy metals.