DOI QR코드

DOI QR Code

Biosorption of Heavy Metal in Aqueous Solution by Heavy Metal Tolerant Microorganism Isolated from Heavy Metal Contaminated Soil

중금속으로 오염된 토양에서 분리한 중금속 내성 미생물의 수용액내 중금속 흡착

  • Kim, Sung-Un (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Choi, Ik-Won (Department of Chemical Engineering, Osaka Prefecture University) ;
  • Seo, Dong-Cheol (Division of Applied Life Science, Gyeongsang National University) ;
  • Han, Myung-Hoon (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Kang, Byung-Hwa (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University) ;
  • Shon, Bo-Kyoon (Division of Applied life and Environmental Sciences, Sunchon National University) ;
  • Cho, Ju-Sik (Division of Applied life and Environmental Sciences, Sunchon National University)
  • 김성은 (순천대학교 생명환경과학부) ;
  • 최익원 (오사카부립대학 회학공학과) ;
  • 서동철 (경상대학교 응용생명과학부) ;
  • 한명훈 (순천대학교 생명환경과학부) ;
  • 강병화 (순천대학교 생명환경과학부) ;
  • 허종수 (경상대학교 응용생명과학부) ;
  • 손보균 (순천대학교 생명환경과학부) ;
  • 조주식 (순천대학교 생명환경과학부)
  • Published : 2005.12.31

Abstract

This study was conducted to find out a useful bioremediation technology for heavy metal contaminated soil and water. We isolated strain CPB from heavy metal contaminated soil and evaluated the tolerance level and adsorption capacity of strain CPB to heavy metals (Strain is not determined yet). Strain CPB showed variable tolerance limit to different kinds heavy metal or concentrations of heavy metals. The growth of strain CPB was significantly inhibited by mixed heavy metals (Cd+Cu+Pb+Zn) than that of by single heavy metal. Strain CPB showed high binding capacity with Pb (Pb>Cd>Cu>Zn). In general, strain CPB showed high uptake of heavy metals such as Pb, Cd and Cu. It was observed that the capacity of heavy metal uptake from mixture of heavy metals was reduced in comparison with single heavy metal treatment. But total contents of heavy metal bound with cell in mixed heavy metal showed higher than in single heavy metal treatment. Heavy metal adsorption in cells was affected by several external factors, such as temperature and pH etc.. The optimum temperature and pH of the adsorption of heavy metal into cells were ca. $25{\sim}35^{\circ}C$ and pH ca. $5{\sim}7$, respectively. A large number of the electron dense particles were found mainly on the cell wall and cell membrane fractions, which was determined by transmission electron microscope. Energy dispersive X-ray spectroscopy revealed that the electron dense particles were the heavy metal complexes the substances binding with heavy metals.

중금속으로 오염된 폐수를 처리하기 위하여 다양한 처리 방법들이 제시되고 있으나, 최근에는 미생물을 이용한 중금속 처리 방법에 대한 관심이 높아지고 있다. 따라서 중금속으로 오염된 토양에서 중금속에 대하여 강한 내성과 우수한 생물흡착능력을 동시에 가지고 있는 미생물 CPB를 분리하여 중금속에 대한 내성, 흡착 능력 및 흡착의 최적조건을 조사하였다. 중금속에 대한 내성은 전체적으로 $400mg{\ell}^{-1}$ 이상의 농도에서도 높은 내성을 보였으며, 생장 저해도는 단일 중금속 보다 중금속이 복합으로 존재 할 경우 더 크게 나타났다. 중금속 흡착 능력은 Pb>Cd>Cu>Zn의 순으로 흡착 능력이 나타났다. 외형적 흡착형태는 중금속의 종류에 따라 세포 표면 및 세포 막 부근에 electron dense particles들이 형성되었으며, 이는 EDS 분석을 통하여 중금속 화합물인 것으로 확인되었다. 중금속을 흡착하는데 있어 전반적인 최적 pH는 $5{\sim}7$범위였고, 최적 온도는 $25{\sim}35^{\circ}C$이다.

Keywords

References

  1. Aksu, Z., Egretli, G., and Kutsal, T. (1999) A comparative study for the biosorption characteristics of chromium (VI) on Ca-alginate, agarose and immobilized C. vulgaris in a continuous packed bed column. J. Environ. Sci. Health A. 34(2), 295-316 https://doi.org/10.1080/10934529909376837
  2. Say, R., Denizli, A., and Arica, M.Y. (2001) Biosorption of cadmium, lead(II) and copper(II) with the filamentous fungus, Phanerochaete chrysoporium, Bioresour. Technol. 76, 67-70 https://doi.org/10.1016/S0960-8524(00)00071-7
  3. Ahn, K. H. and Suh, K. H. (1995) Biosorption of Heavy Metlas by Saccharomyces uvarm. J. of Kerean Environmental Sciences Society. 5, 527-534
  4. Rudd, T., Sterritt, R. M., and Lester J. N. (1984) Complexation of heavy metals by extracellular polymers in the activated sluge process, WPCF. 56(12), 1260-1268
  5. Volesky, B. May. H., and Holan Z. R. (1993) Cadmium biosorption by saccaromyces cerevisiae, Biotech. and Bioeng. 41, 826-829 https://doi.org/10.1002/bit.260410809
  6. Goksungur, Y., S. Uren, and U. Guvenc. (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass. Bioresour. Technol. 96, 103-109 https://doi.org/10.1016/j.biortech.2003.04.002
  7. Choi, S.D., H.B. Hong., and Y.S. Chang. (2003) Adsorption of halogenated aromatic pollutants by a protein released from Bacillus pumilus. Water Research. 37, 4004-4010 https://doi.org/10.1016/S0043-1354(03)00308-7
  8. Eric, F., Catherine, C., and Roux, J. C. (1994) Evaluation of a countercurrent biosorption system for the removal of lead and copper aqueous solutions, FEMS Microbiol. 14, 333-338 https://doi.org/10.1111/j.1574-6976.1994.tb00107.x
  9. Volesky, B. (1990) Biosorption of Heavy Metals, CRC Press, 21., Boca Raton Ann Arbor, Boston. p.20-21
  10. Kadukova, J. and Vircikova, E. (2005) Comparison of differences between copper bioaccumulation and biosorption. Environmental International. 31, 227-232 https://doi.org/10.1016/j.envint.2004.09.020
  11. Yan, G. and Viraraghavan, T. (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research. 37, 4486-4496 https://doi.org/10.1016/S0043-1354(03)00409-3
  12. Sag, Y. and Kutsal, T. (2000) Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem. Eng. J. 6, 145-151 https://doi.org/10.1016/S1369-703X(00)00083-8
  13. Bedwell, G. W. and D. W. Darnal. (1990) Biosorption of heavy meatls, CRC press, Boca Raton, pp. 314-316
  14. Norberg, A. B. and H. Persson. (1984) Accumulation of heavy metal ions by Zoogloearamigera, Biotech. and Bioeng. 26, 239-246 https://doi.org/10.1002/bit.260260307
  15. Tsezos, M. and B. Volesky (1982) The mechanism of uranium biosorption by Rhizoups arrhizus. Biotech. Bioeng. 24, 385-401 https://doi.org/10.1002/bit.260240211
  16. Say, R., Denizli, A., and Arica, M.Y. (2001) Biosorption of cadmium, lead(II) and copper(II) with the filamentous fungus, Phanerochaete chrysoporium, Bioresour. Technol. 76, 67-70 https://doi.org/10.1016/S0960-8524(00)00071-7
  17. Kadukova. J. and E. Vircikova (2005) Comparison of differences between copper bioaccumulation and biosorption. Environmental International. 31, 227-232 https://doi.org/10.1016/j.envint.2004.09.020
  18. Ince Yilmaz, E. (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Research in Microbiology. 154, 409-415 https://doi.org/10.1016/S0923-2508(03)00116-5
  19. Hassen, A., N. Saidi., M., and Cherif, A. (1998) Baudabous, Resistance of environmental bacteria to heavy metals. Bioresour. Technol. 64. 7-15
  20. Verma Tuhina, T. Srinath, R. U. Cadparle, P. W. Ramteke, P. K. Hans., and S. K. Cargo (2001) Chromate tolerance bacteria isolated from tannery effluent. J Gen Appl Microbiol. 47(6), 307-312 https://doi.org/10.2323/jgam.47.307
  21. Willard L. Lindsay. (1979) Chemical Equilibria in Soils, John Wiley & Sons
  22. Strandberg, G.W., S.E. II Shumate., and J.R. Parrot. (1981) Micronial cells as biosorbents for heavy metals : accumulation of uranium by Sacchromyces cereoisiae and Pseudomonas aeruginosa. Appl. 41(1), 237-245
  23. Fourest E. and J.C. Roux. (1992) metal biosorption by fungal mycelial by poiducts : mechanisms and onfluence of pH Appl. Microbiol. Biotechno. 37: 399-403 https://doi.org/10.1007/BF00211001
  24. Guibal, E., Roulph, C., and Cloirec, P. L. (1992) Uranium biosorption by a filamentous fungus Mucor Miehei : pH effect on mechanisms and performances of uptake, Water Research. 26, 1139-1145 https://doi.org/10.1016/0043-1354(92)90151-S
  25. Sautel, G., Roulph, C., and Leclerc, P. (1991) Caclmirnn biofixation by Pseudomonas puiida bacteria. Recents Progres en Genie des procedes. 5, 203-208
  26. Fourest, E. and Volesky, B. (1996) Contribution of sulphonate group and alginate to heavy metal biosorption by dry biomass of Sargassrnn fluitants. Environmental Science and Technology. 30. 227-302 https://doi.org/10.1021/es9627398
  27. Fourest, E. and Volesky, B. (1997) Alginate properties and heavy metal ciosorption by marine algae. Biochemistry and Biotechnology. 67, 215-216 https://doi.org/10.1007/BF02788799
  28. Fourest, E. and Roux, J. C. (1992) Heavy metal biosorption by fungal mycelial by products : mecahnisms influence of pH. Applied Microbiology and Biotechnology. 37,399-403 https://doi.org/10.1007/BF00211001
  29. Fourest, E. and Volesky, B. (1997) Alginate properties and heavy metal ciosorption by marine algae. Biochemistry and Biotechnology. 67, 215-216 https://doi.org/10.1007/BF02788799
  30. Huang, C. and Huang, C.P. (1996) Applocation of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Research. 30, 1985-1990 https://doi.org/10.1016/0043-1354(96)00020-6
  31. Doyle, R. J., Matthews, T. H., and Streips, U. N. (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall, J. Bacteriol. 143(1), 471-480
  32. Guibal, E., Roulph, C., and Cloirec, P. L. (1992) Uranium biosorption by a filamentous fungus Mucor Miehei : pH effect on mechanisms and performances of uptake, Water Research. 26, 1139-1145 https://doi.org/10.1016/0043-1354(92)90151-S
  33. H. Salehizadeh, S.A. Shojaosadati. (2003) Removal of metal ions from aqueous solution by polysaccharide produce from Bacillus Firmus. Water Research. 37, 4231-4235 https://doi.org/10.1016/S0043-1354(03)00418-4
  34. Flemming, C. A., Ferris, F. G., Beveridge, T. J., and Bailey, G. W. (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites, Appl. Environ. Microbiol. 56(10), 3191-3203
  35. KaduKova, J. and Komorova, T. (2002) Bopakumulacia a biocoppcia striebra riasou Chlorella kessleriz modelovych roztokov [Silcer bioaccumulation and biosorption by alga chlorella kessleri from model solutions]. Acta Metall Slovaca. 8(2), 117-123

Cited by

  1. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  2. Adsorption Characteristics of Cd, Cu, Pb and Zn from Aqueous Solutions onto Reed Biochar vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.489
  3. Effects of Heavy Metal and pH on Bacterial Growth Isolated from the Contaminated Smelter Soil vol.20, pp.4, 2015, https://doi.org/10.7857/JSGE.2015.20.4.113
  4. Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions vol.35, pp.1, 2016, https://doi.org/10.5338/KJEA.2016.35.1.10
  5. A Study of Burcucumber Biochars to Remediate Soil Pb Considering GWP (Global Warming Potential) vol.37, pp.7, 2015, https://doi.org/10.4491/KSEE.2015.37.7.432
  6. Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar vol.46, pp.1, 2013, https://doi.org/10.7745/KJSSF.2013.46.1.008
  7. Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.10