• Title/Summary/Keyword: dispersion solution

Search Result 601, Processing Time 0.024 seconds

Analysis of elastic wave propagation in long beam using Fourier transformation

  • Mohammad Tahaye Abadi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • This paper presents a novel method for modeling elastic wave propagation in long beams. The proposed method derives a solution for the transient transverse displacement of the beam's neutral axis without assuming the separation of variables (SV). By mapping the governing equation from the space domain to the frequency domain using Fourier transformation (FT), the transverse displacement function is determined as a convolution integral of external loading functions and a combination of trigonometric and Fresnel functions. This method determines the beam's response to general loading conditions as a linear combination of the analytical response of a beam subjected to an abrupt localized loading. The proposed solution method is verified through finite element analysis (FEA) and wave propagation patterns are derived for tone burst loading with specific frequency contents. The results demonstrate that the proposed solution method accurately models wave dispersion, reduces computational cost, and yields accurate results even for high-frequency loading.

A Study on the Evaluation of Corrosion Resistance of Coated Steel Using Polymer Dispersion (폴리머 디스퍼션을 이용한 강재의 내식성 평가에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.103-109
    • /
    • 2003
  • Reinforced concrete structures under sever conditions such as marine structures, bridges and structural constructed with aggregated(dredged front sea). can be deteriorated from corrosion of the reinforcing bars. The purpose of this study is to evaluate the corrosion reflectance of coated steel using polymer dispersion and polymer cement slurry. Polymer dispersion and polymer cement slurry with various polymer types were coated to the surface of bars and steel plate, and tested for accelerated corrosion tests. Tests include adhesion in tension, bending test, chloride ion spray, penetration of NaCl 10% solution and carbonation. From the test results, the corrosive resistance of steel is considerably improved by using polymer dispersion and polymer cement flurry at surface of steel. The difference of the corrosive resistance is hardly recognized according to types of polymer dispersion. The coated steel using polymer dispersion and polymer foment slurry will be improved to a great extent compared to those of plain steel when increasing content of chloride ion in cement concrete.

A Study on the Correlation Between Crystallinity and Dispersion Characteristics of Eco-Friendly Semiconductive for Power Cable (전력케이블용 친환경 반도전 컴파운드의 결정화도와 분산 특성의 상관관계에 대한 연구)

  • Han, Jae Gyu;Yun, Jun Hyeong;Seong, Soo Yeon;Jeon, Geun Bae;Park, Dong Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.400-404
    • /
    • 2020
  • In this paper, we study the correlation between the crystallinity of semiconductive compounds for eco-friendly power cables and the dispersive properties of carbon black. The crystal structure of the polymer material is advantageous for mechanical properties and heat-resistance. However, the polymer acts as an inhibitor to the dispersibility of carbon black. The purpose of this study is to develop a TPE semiconductive compound technology. The high heat resistance and ultra-smoothness characteristics which are required for high voltage and ultra-high voltage cables should be satisfied by designing and optimizing the structure of a non-crosslinking-type eco-friendly TPE semiconductive compound. The application of excess TPE resin was found to not only inhibit the processability in the compounding process, but also reduced the dispersion properties of carbon black due to higher crystallinity. After the crystallinity of the compound was identified through DSC analysis, it was compared with the related dispersion characteristics. Through this analysis and comparison, we designed the optimal structure of the eco-friendly TPE semiconductive compound.

Effect of Solubility of Thiamine Dilauryl Sulfate Solution through the Manufacture of the Nano Paticles on Antifungal Activity (비타민 B1 유도체 Thiamine Dilauryl Sulfate의 나노 입자 제조를 통한 수용액의 용해도에 따른 항진균 활성 평가)

  • Seo, Yong-Chang;Choi, Woon-Yong;Lee, Choon-Geun;Cho, Jeong-Sub;Yim, Tae-Bin;Jeong, Myoung-Hoon;Kim, Sung-Il;Yoon, Won-Byung;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.464-471
    • /
    • 2011
  • Conventional Thiamine Dilauryl Sulfate (TDS) powder has a low stability. In order to solve this problem, this study was performed to improve the solubility of TDS. The process for enhance solubility of TDS was nano grinding mill and ultrasonic dispersion process. TDS paticle was manufactured to nano size through nano grinding mill process. The size of TDS nanoparticle was measured as average 220 nm by DLS. And The TDS nanoparticle in water solution manufactured through ultrasonic dispersion process. The TDS nanoparticle in water solution was showed the highest solubility with 40% ethanol. These results was increased the concentration of TDS from 200 ppm to 240 ppm in water solution. The TDS nanoparticle in water solution showed diameter of Colletotrichum gloeosporioides growth with smaller than about 1.56 cm compared to the TDS paticle in water solution at same concentration. Also, TDS nanoparticle in water solution showed growth inhibition activity as 59.2% with higher than about 10% compared to the TDS paticle water solution in same concentration. Finally, TDS nanoparticle in water solution was increased solubility through nano grinding mill and ultrasonic dispersion process. Also, the increase of concentration in TDS nanopaticle in water solution according to solubility enhancement lead to an result enhancement of antifungal activity. Consequently, we suggested that the TDS nanoparticle in water solution was more effective than TDS particle in water solution owing to the sub-cellular particle size, ability to persistence and targeting to cell membrane of Colletotrichum gloeosporioides. Furthermore we expected the applicating possibility with bio pesticide.

Phosphate removing by graphene oxide in aqueous solution

  • Jun, Tae-Sung;Park, No-Hyung;So, Dea-Sup;Lee, Joon-Woo;Shim, Kwang Bo;Ham, Heon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.325-328
    • /
    • 2013
  • Phosphate has been removed in waste water by chemically synthesized graphene oxide. Removing efficiency of phosphate was investigated using phosphate dispersion aqueous solution, and 70 % of phosphate was removed in phosphate dispersion solution by chemically synthesized graphene oxide solution. Removing efficiency of phosphate was increased from 70 % to 80 % with assistant of iron nano-particle in chemically synthesized graphene oxide solution. Phosphate removing capacity was up to 89.37 mg/g at initial phosphate concentration of 100 mg/l and temperature of 303 K. The Freundlich was applied to describe the equilibrium isotherms and the isotherm constants were determined.

A novel preparation and formation mechanism of carbon nanotubes aerogel

  • Li, Shaolong;He, Yan;Jing, Chengwei;Gong, Xiubin;Cui, Lianlei;Cheng, Zhongyue;Zhang, Chuanqi;Nan, Fei
    • Carbon letters
    • /
    • v.28
    • /
    • pp.16-23
    • /
    • 2018
  • A novel, unique, and effective method for carbon nanotube (CNT) dispersion by the free arc stimulation is proposed. CNTs are introduced as an aerogel into the air space via the dispersion method and can be utilized as a solution by adding it to solvents. The volume of the original generated CNT aerogel with a high-volume expansion ratio displays a performance two orders of magnitudes better than that of raw CNTs, which is considered a powerful characterization of the dispersion effect. The CNT aerogel, which was observed by scanning electron microscopy also showed a satisfactory dispersion morphology. Its structure and properties were tested before and after dispersion by Raman spectroscopy and great consistency was observed, which proved that the CNTs were undamaged. This approach may greatly promote the large-scale application of CNTs.

Modification of Carbon Nanotube for the Improvement of Dispersion and the Dispersion Characteristics of Carbon Nanotube in Polyurethane (분산성 향상을 위한 탄소나노튜브의 개질과 폴리우레탄과의 분산 특성)

  • Park, Kyung-Soon;Kim, Seung-Jin;Kim, Jeong-Hyun;Park, Jun-Hyeong;Kwon, Oh-Kyung
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • The thermal treatment for carbon nanotube was applied to remove the water, metal catalyst and other impurities in carbon nanotube. The surface of carbon nanotube was changed into open structure with acid treatment by mixed solution of $HNO_3$ and $H_2SO_4$. The dispersion property of the functionalized and modified carbon nanotube was assessed with naked eyes by dispersing it in DMF. Carbon nanotube mixd polyurethane film was made to estimate the dispersion property by reflectance of the film with UV-Vis spectrometer. Also the internal structure of carbon nanotube was observed with SEM and TEM and thermal pyrolysis property of the carbon nanotube was measured by TGA and DSC. The surface modification of carbon nanotube by thermal and acid treatments improved the dispersion property of carbon nanotube/polyurethane mixed materials.

Relations Between Dispersion of CNTs and Electrical Conductivity in the Hydrophobic CNT/PVDF Composite Film (소수성 CNT/PVDF 복합막에서 CNT의 분산과 전도성의 관계)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.462-466
    • /
    • 2015
  • In this paper, we investigated the relations between dispersion of CNTs (carbon nanotubes) and electrical conductivity in the CNT/PVDF (polyvinylidene fluoride) composite film. By adding hydrophobic CNTs as filler into the PVDF matrix, we fabricated hydrophobic and electrically conducting polymer coating film. Dispersion of CNTs in the CNT/PVDF composite film plays a significant role in terms of electrical conductivity and wetting property. Spray coating method was used to form the CNT/PVDF composite films by injecting the dispersed CNTs in the PVDF solution with different weight ratios from 0.7 wt% to 7 wt%. We investigated the electrical properties and contact angles of the CNT/PVDF composite films with the CNT concentration. Finally we discussed the conducting mechanism and feasibility of the CNT/PVDF composite film for the conducting polymer films.

A Study on the Atmospheric Dispersion of Odor Emitted from Banwol/Sihwa Industrial Complex in Ansan Area (반월, 시화공단 악취물질의 안산지역 확산 연구)

  • Song, Dong-Woong;Song, Chang-Keun;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.323-340
    • /
    • 2003
  • There have been persistent civil appeals in Ansan area against the odor and aerosols emitted from nearby Banwol/Sihwa industrial complex. A fundamental solution for the good air quality has not been addressed yet in spite of the continuous counterplan to reduce odor emission. A systematic and scientific study is needed to examine the reason for the odor episode and to predict the impact coverage of odor pollution. An approach by computational simulation is considered to be adequate to investigate the transportation and the dispersion processes of air pollutants blown by sea breeze toward the coastal city, Ansan. This study has employed various dispersion models to simulate the transportation and the dispersion processes of odor pollutants by a local circulation between land/sea breeze using the data set of emission rates of odorous species from the Banwol/Sihwa industrial complex.