• 제목/요약/키워드: dispersion equations

검색결과 215건 처리시간 0.026초

원형 단면을 갖는 헬리컬 스프링에 대한 파동 (Wave Motion of Helical Springs with a Circular Section)

  • 이재형;허승진
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.866-873
    • /
    • 2001
  • The governing partial differential equations of a helical spring with a circular section were derived from Frenet formulas and Timoshenko beam theory. These were solved to give the dispersion relationship between wave number and frequency along with wave form. Wave motions of helical springs are categorized by 4 regimes. In the first regime, the lower frequency area, the torsional and extensional waves of the spring are predominant and two waves are composite wave motions involving lateral motion of the coils and rotation of the coils about a horizontal axis. All waves are propagating in the second regime. The wave of the extensional motion of the spring and one wave of transverse motion of a wire change from travelling waves to near field waves in the third regime. Both waves excited by both axial and transverse motion are predominant in the fourth regime.

On the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of viscoelastic materials

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.143-160
    • /
    • 2017
  • The paper studies the attenuation of the axisymmetric longitudinal waves propagating in the bi-layered hollow cylinder made of linear viscoelastic materials. Investigations are made by utilizing the exact equations of motion of the theory of viscoelasticity. The dispersion equation is obtained for an arbitrary type of hereditary operator of the materials of the constituents and a solution algorithm is developed for obtaining numerical results on the attenuation of the waves under consideration. Specific numerical results are presented and discussed for the case where the viscoelasticity of the materials is described through fractional-exponential operators by Rabotnov. In particular, how the rheological parameters influence the attenuation of the axisymmetric longitudinal waves propagating in the cylinder under consideration, is established.

다공질 물질 속에서의 열 및 물질 전달에 대한 연구 (A Study on Heat and Mass Transfer in Porous Media)

  • 정모
    • 태양에너지
    • /
    • 제15권1호
    • /
    • pp.39-51
    • /
    • 1995
  • 다공질 물질 속에서 일어나는 저속 유동(Darcy Flow)에 동반한 열 및 물질 전달 문제를 해석하기 위한 새로운 수치 해석 기법이 소개되고 간단한 예제를 통하여 그 성능을 평가하였다. 본 연구의 수치 해석법은 다공질 물질 속에서 일어나는 모든 전달 현상에서 중요한 확산효과(Dispersion Effect)를 쉽게 처리할 수 있으며 특히 미정 경계선 문제(Moving Boundary Problem) 해석에도 효과적으로 적용될 수 있어 응용 범위가 넓을 것으로 기대된다.

  • PDF

임원에서의 1983년 동해 중부 지진해일 수치모의: 1. 동해에서의 전파 (Numerical Simulations of 1983 Central East Sea Tsunami at Imwon: 1. Propagation across the East Sea)

  • 조용식;이호준
    • 한국수자원학회논문집
    • /
    • 제35권4호
    • /
    • pp.443-452
    • /
    • 2002
  • 본 연구에서는 지난 수십 년간 가장 파괴적인 지진해일로 기록된 1983년 동해에서 발생한 지진해일이 동해를 거쳐 우리나라 동해안으로 전파해오는 과정을 수치해석하였다. 천수방정식에 근거한 수치모형을 이용하였으며, 물리적 분산은 leap-frog 유한차분기법에 의해 발생하는 수치분산으로 어느 정도 대체하도록 하였다. 진원으로부터 지진해일 전파도와 파향선법에 의한 전파제적을 산정하였다.

Frequency characteristics of a multiferroic Piezoelectric/LEMV/CFRP/Piezomagnetic composite hollow cylinder under the influence of rotation and hydrostatic stress

  • Selvamani, R.;Mahesh, S.;Ebrahimi, F.
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.185-198
    • /
    • 2021
  • An analytical model is consider to scrutinize axisymmetric wave propagation in multiferroic hollow cylinder with rotating and initial stressed forces, where a piezomagnetic (PM) material layer is bonded to a piezoelectric (PE) cylinder together by Linear elastic materials with voids. Both distinct material combos are taken into account. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The numerical calculations are carried out for the non-dimensional frequency by fixing wave number and thickness. The arrived outputs are plotted as the dispersion curves for different layers. The results obtained in this paper can offer significance to the application of PE/PM composite hollow cylinder via LEMV and CFRP layers for the acoustic wave and microwave technologies.

Barotropic Shelf Waves Generated By Longshore Wind Stress

  • Lie, Heung-Jae
    • 한국해양학회지
    • /
    • 제16권2호
    • /
    • pp.99-107
    • /
    • 1981
  • A partial differential equation for the adjusted sea level, obtained from the long wave equations in shallow water, is reduced to a simpler one by the use of physically reasonable approximations based on the observations. The similar equation for the stream function indicates that shelf waves are generated by the longshore wind stress. This indication is in good agreement with the high correlation between the adjusted sea levels and the longshore wind stress. From the dispersion relationship and the boundary conditions, there exist a countable infinite number of modes which satisfy a first-order wave equations. The adjusted sea level for a given wind stress can easily be calculated by utilizing the convolution and the Fourier transformation. Some detailed solutions are presented here for sinusoidal and exponential wind stress.

  • PDF

Wave propagation in a generalized thermo elastic plate embedded in elastic medium

  • Ponnusamy, P.;Selvamani, R.
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.13-26
    • /
    • 2012
  • In this paper, the wave propagation in a generalized thermo elastic plate embedded in an elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and foundation are obtained by the traction free boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the results for the case with no thermal effects shows well agreement with those by the membrane theory.

Turbulence Models for the Surface Discharge of Heated Water

  • Choi, Hung-Sik;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • 제3권
    • /
    • pp.61-79
    • /
    • 1992
  • In oder to predict the dispersion of a thermal discharge with strong turbulent and buoyant effects, the development of a numerical model using turbulence model and its application are significantly increased. In this study, a three-dimensional steady-state model for the surface discharge heated water into quiescent water body is developed. For the model closure of turbulent terms the four-equation turbulence model is used. For economic mumerical simulation, the elliptic governing equations are transformed to the partially parabolic equations. In general, the simulated results by the present model agree well with the experimental results by Pande and Rajratnam (1977). The model characteristics are presented in comparison with the predicted results from the two-eqauation turbulence model by McGuirk and Rodi (1979).

  • PDF

Wave propagation in a generalized thermo elastic circular plate immersed in fluid

  • Selvamani, R.;Ponnusamy, P.
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.827-842
    • /
    • 2013
  • In this paper, the wave propagation in generalized thermo elastic plate immersed in fluid is studied based on the Lord-Shulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and fluid are obtained by the perfect-slip boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency, phase velocity and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the fluid interaction.

A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.349-362
    • /
    • 2020
  • Dynamic characteristics of a scale-dependent porous metal foam cylindrical shell under a traveling load have been explored within this article based on a numerical approach. Within the material texture of the metal foams, uniform and non-uniform porosities may be dispersed. Based upon differential quadrature method (DQM) and Laplace transforms, the equations of motion for a shear deformable scale-dependent shell may be solved numerically. Scale-dependent shell modeling has been provided based upon strain gradient elasticity. Solving the equations will give the shell deflection as a function of load speed. Also, it is reported that shell deflection relies on the porosity dispersion and strain gradient influences.