• Title/Summary/Keyword: disk/spindle system

Search Result 64, Processing Time 0.022 seconds

Characterization and Detection of a Free-falling State of a Mobile HDD Using the Electromechanical Analysis in a Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.12-18
    • /
    • 2006
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by the fluid dynamic bearing under the free-falling condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravity force exerted on the rotating part of HDD, and the free-falling condition can be detected by observing the signal of the spindle motor and disk-head interface without using an accelerometer.

Characterization and Detection of a Free-Falling State of a mobile HDD Using Electromechanical Analysis in Rotating Spindle System (스핀들 회전축계의 기전 연성 해석을 이용한 모바일 HDD의 자유 낙하 특성 및 감지에 관한 연구)

  • Park, Sang-Jin;Jang, Gun-Hee;Kim, Cheol-Soon;Han, Jae-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.324-329
    • /
    • 2005
  • This research investigates the electromechanical characteristics of a spindle motor in a free-falling mobile hard disk drive before unexpected shock. Electromechanical simulation includes a time-stepping finite element analysis of the magnetic field in a speed controlled brushless DC motor and dynamic analysis of the stationary and rotating part linked by fluid dynamic bearing under the free-failing condition. Analysis results show that the dynamic characteristics of the rotating spindle system during free-falling state have an effect on the relative motion between the stationary and rotating part of HDD. It results from the variation of reaction force in the bearing area due to the gravely force exerted on the rotating part of HDD, and the free-failing condition can be detected by observing the signal of the spindle motor and disk-head interface without using the accelerometer.

  • PDF

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

A Study on the Vibration Characteristics of HDD Spindle Motor (하드 디스크 구동 스핀들 모터의 진동 특성에 관한 연구)

  • 장건희;한재혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.160-166
    • /
    • 1997
  • The spindle motor in a computer hard disk drive can be modeled as a rotor-bearing system supported by the base plate. Ball bearing is the crucial element to determine the stiffness of the spindle motor, and its design parameters and operating conditions determine the dynamic characteristics of the spindle motor. In the analysis of a rotor-bearing system with a short shaft like a spindle motor, the stiffness of the base plate as well as ball bearings must be considered accurately to analyze the dynamic charateristics of a spindle motor. In this paper, the lateral and the axial vibration of the spindle motor were analyzed by the transfer matrix method for the dual-shaft rotor-bearing model and by d.o.f lumped parameter model, respectively. The simulation results had good agreements with the experimental modal testing. The dynamic characteristics were fully investigated for the change of the major design parameters of the spindle motor, i.e. the preload of ball bearings and the rotational speed.

  • PDF

Forced Vibration Analysis of the Hard Disk Drive Spindle Systems (하드디스크 드라이브 회전축계의 강제진동해석)

  • Lim, Seung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1601-1608
    • /
    • 2000
  • This paper is concerned with the forced flexural vibration analysis of hard disk drive (HDD) spindle systems with multiple thin disks, supported by two ball bearings based on the finite element model. This is the extension of the previous work which analytically modeled every system component taking into account its structural flexibility and also the centrifugal stiffening effect especially for the disks. Among the end results, the forced time response is expectedly useful for the vibration control of the spindle itself or the position servo control of the magnetic head. On the other hand, the steady state responses such as the frequency response function and the unbalance response are useful for system identification. Futhermore, through a coordinate transformation the equations of motion is also derived with respect to the inertial frame for convenient analyses of certain classes.

  • PDF

Experimental Study on the Electrostatic Discharge in the HDD Spindle System Using Fluid Dynamic Bearings (유체동압베어링을 사용하는 하드디스크 드라이브 스핀들 시스템에서 발생하는 정전기 방전에 관한 실험적 연구)

  • Kang, Min-Gu;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.75-80
    • /
    • 2006
  • This paper introduces the mechanism of the ESD(electrostatic discharge) in the HDD spindle system using FDBs(fluid dynamic bearings). When a HDD(hard disk drive) spindle system is rotating, triboelectric charging occurs in the FDBs through the friction between the lubricant and the rotating shaft or between the lubricant and stationary sleeve. And this electrostatic charge is accumulated in the rotating parts of the HDD spindle system because they are insulated from the ground by the lubricant. This research shows experimentally that the behavior of electric charge and discharge in the FDB spindle system is the same as that of a capacitor. It also measures the electrostatic voltage difference between the rotating and stationary parts in the FDB spindle system due to the change of humidity, supporting load and motor speed. This research shows that the control of ESD is required in the HDD spindle system using FDBs, because the electrostatic charge accumulated in the FDB spindle system may cause the breakdown damage of the GMR head and data loss consequently.

Experiental Study on the Electrostatic Discharge in the HDD Spindle System Using Fluid Dynamic Bearings (유체동압베어링을 사용하는 하드 디스크 드라이브 스핀들 시스템에서 발생하는 정전기 방전에 관한 실험적 연구)

  • Kang, Min-Gu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.318-323
    • /
    • 2005
  • This paper introduces the mechanism of the ESD (Electrostatic discharge) in the HDD spindle system using FDBs (Fluid Dynamic Bearings). When a HDD (Hard Disk Drive) spindle system is rotating, triboelectric charging occurs in the FDBs through the friction of the lubricant between the rotating shaft and stationary sleeve. And this electrostatic charge is accumulated in the rotating part of the HDD spindle system because it is insulated from the ground by the lubricant. This research shows experimentally that the behavior of electric charge and discharge in the FDB spindle system is the same as that of a capacitor. It also measures the electrostatic charge and discharge of the FDB spindle system due to the chanse of humidity, supporting load and motor speed. This research shows that the control of ESD is required in the HDD spindle system using FDBs, because the electrostatic charge accumulated in the FDB spindle system may cause the breakdown damage of the GMR head and data loss consequently.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Dynamic Behavior Analysis for HDD Spindle Motors with Rotor Eccentricity (HDD 스핀들 구동용 BLDC 전동기의 편심을 고려한 동적 거동 해석)

  • 김태종;김경태;황상문
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.977-984
    • /
    • 2000
  • Vibration of disk drive spindle is one of the major limiting factors in achieving higher track densities in hard disk drives. Vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the motor air-gap. In this paper, radial magnetic forces for symmetric and asymmetric BLDC motor are calculated with respect to the various rotor eccentricity using analytic method. Based on the results of the radial magnetic forces, transient whirl responses of the spindle motor are analyzed using finite element and transfer matrices. Results show that an asymmetric motor has a worse effects on unbalanced magnetic forces and vibration when mechanical and magnetic coupling exists.

  • PDF