• 제목/요약/키워드: disinfection by-products

검색결과 140건 처리시간 0.021초

Handspace Solid Phase Microextraction 방법에 의한 HANs 분석에 관한 연구 (Analysis of Haloacetonitriles in Drinking Water Using Headspace-SPME Technique with GC-MS)

  • 조덕희
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.628-637
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of disinfection by-products (DBPs) such as haloacetonitriles (HANs), trihalomethanes (THMs), haloacetic acids (HAAs). In this study, headspace-solid phase microextraction (HS- SPME) technique was applied for the analysis of HANs in drinking water. The effects of experimental parameters such as selection of SPME fiber, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and detection limits were also evaluated. The $50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were the optimal experimental conditions for the analysis of HANs. The correlation coefficients ($r^2$) for HANs was 0.9979~0.9991, respectively. The relative standard deviations (%RSD) for HANs was 2.3~7.6%, respectively. Detection limits (LDs) for HANs was $0.01{\sim}0.5{\mu}g/L$, respectively.

양식장 넙치 폐사어를 이용한 단백질 소재의 개발에 관한 연구(2) -산업화공정 연구- (A Study on Development of Protein Materials using Dead Flatfish from Fish Farms(2) -Industrial Process-)

  • 강건희;이민규;감상규;정갑섭
    • 한국환경과학회지
    • /
    • 제22권12호
    • /
    • pp.1625-1631
    • /
    • 2013
  • In manufacturing of flatfish skin collagen peptide (FSCP) and flatfish protein hydrolysate (FPH) by reuse of dead flatfish from fish farm in Jeju island, the industrial process was optimized with the laboratory scale research and the on-field process. Segmented unit processes from raw material incoming to shipment were established to produce commercial product of FSCP and FPH. Total plate counts of FSCP were twenty five times of FPH, but food poisoning bacteria were not detected in two samples. FSCP and FPH were safe from heavy metal such as Pb(II), Cd(II) and Hg(II). The residual contents of antibiotics and disinfection matter in FSCP and FPH were not detected. The optimized process for mass production made the one-third of the running time and two times of the yield. From economic analysis, the production cost was estimated to 22,000 and 12,000 won/kg for FSCP and FPH, respectively. Therefore the product from the reuse of dead flatfish was expected to have a considerable competitive price and high added-value functional food material compared with other commercially available fish products.

배.급수관망의 잔류염소 확보를 위한 적정 재염소 주입량 산정 및 효과분석 (Computing the Dosage and Analysing the Effect of Optimal Rechlorination for Adequate Residual Chlorine in Water Distribution System)

  • 김도환;이두진;김경필;배철호;주혜은
    • 대한환경공학회지
    • /
    • 제32권10호
    • /
    • pp.916-927
    • /
    • 2010
  • 일반적으로 정수처리 공정에서 염소에 의한 소독공정은 수인성 질병을 억제하고 상수도관망에서 미생물의 재성장을 억제하는 목적으로 사용되고 있다. 그러나 염소소독은 수중의 유기물과 반응하여 소독부산물(Disinfection By-products; DBPs) 과 같은 발암성 물질을 생성함으로 적절한 염소 주입이 필요하고 최근에는 관말지역에서의 잔류염소 확보를 위해 상수관로 나 배수지 등에서 재염소를 실시하는 경향이 증가하고 있는 추세이다. 따라서 본 연구에서는 정수장에서 최적의 염소주입과 재염소 주입량을 산정하기 위하여 미국 EPA에서 개발한 EPANET 2.0을 사용하여 최적 염소 주입량을 산정하고 그 효과를 모의하였다. 대상지역 상수관로에 대한 수질을 모의하기 위하여 bottle test를 통해 수체감소계수($k_{bulk}$)를 도출하였으며, syster-matic analysis method를 이용하여 관벽감소계수($k_{wall}$)를 도출하였다. 배ㆍ급수계통에서의 수질을 정확히 예측하고자 유량과 체류시간 등을 고려한 수리해석 모델을 기초로 하여 상수도관망에서의 잔류염소 농도를 예측하고 염소주입 농도에 따른 소독부산물(DBPs)인 트리할로메탄(Trihalomethanes; THMs)의 생성변화를 실험을 통해 확인하였다. 수체감소계수($k_{bulk}$)를 도출한 결과 온도가 높을수록 초기에 빠른 감소를 보였으며, $25^{\circ}C$의 경우 25시간이 지난 이후에는 절반이상이 감소하였다. 대상지역에 재염소 주입시설을 도입할 경우 최적 재염소 주입량을 산정하였으며, 관망도상에서 경제적으로 유리한 지점을 선정할 수 있었다.

음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구 (A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water)

  • 이강진;홍지은;표희수;박송자;유제강;이대운
    • 분석과학
    • /
    • 제16권3호
    • /
    • pp.249-260
    • /
    • 2003
  • 한강에서 채취한 원수에 염소소독제인 hypochlorite를 $10{\mu}g/m{\ell}$의 농도로 투여한 후 1시간~14일까지 TOC (total organic carbon), 잔류염소량 및 탁도 등을 측정하고 THMs (trihalomethanes), HANs (haloacetonitriles), HKs (haloketones), chloral hydrate 및 HAAs (haloacetic acids) 등의 염소소독 부산물의 생성율을 조사하였다. 그 결과 잔류염소량은 투여후 1시간 경과 시 $6{\mu}g/m{\ell}$ 이상에서 14일째에 $1.23{\mu}g/m{\ell}$으로 감소하였으며 TOC 및 탁도는 큰 차이가 없었다. 7일 후 발생한 총 소독부산 물의 농도는 $101.3ng/m{\ell}$ (789.6 nM)이며 이 중 THMs이 69%로 가장 큰 비중을 차지하였다. 그 외에 HAAs가 19%, chloral hydrate가 10% 정도 검출되었으며, HANs와 HKs 및 chloropicrin 등은 미량 검출되었다. THMs 중에서는 chloroform이 $61.5ng/m{\ell}$로 총 THMs 중 약 89% 정도를 차지하였으며 HANs 중에서는 DCAN이 95%인 $0.72ng/m{\ell}$, HAAs 중에서는 TCAA가 50% 등으로 가장 높은 비율로 검출되었다. 각 부산물의 발생량의 상관관계를 조사한 결과 THMs과 HANs의 경우 THMs의 농도가 $40ng/m{\ell}$인 지점을 경계로 HANs과 경쟁적 발생관계가 있음이 나타났다. HAAs의 경우는 특별한 경향성을 나타내지 않았으나 전체적으로 초기에 산화상태가 큰 화합물에서 산화상태가 작은 화합물로 점차 변화하는 것으로 관찰되었다.

조리시 가열에 따른 수돗물 중 염소소독부산물의 농도 변화와 인체 섭취 노출 (Changes in the Concentrations of the Tap Water Chlorination By-Products by Heating during Cooking, and Human Ingestion Exposure)

  • 김희갑;이수형
    • Environmental Analysis Health and Toxicology
    • /
    • 제14권1_2호
    • /
    • pp.35-43
    • /
    • 1999
  • A number of disinfection by-products (DBPs) are formed as a result of the addition of chlorine into the public water supply and some of them have been suggested to cause adverse health effects on humans. However, the estimation of human ingestion exposure to each DBP has been performed simply by multiplying the concentration of a chemical in the cold tap water by the volume of water consumed during a given period of time. However, a questionnaire concerning water consumptions administered to sixty people residing in Chunchon showed that the volume of tap water consumed accounted for approximately 70% of the total volume of water consumed and that of heated water represented approximately 94% of tap water ingested. Heating durations for water-containing foods (e. g., soups and pot stews) and heated beverages (e. g., barley tea) were grouped into 10, 20, 30, and 35 minutes. Based on these time frames, an aluminum pot containing one liter of tap water was heated for the above respective time periods using a gas range to determine the variations of the concentrations of individual DBPs by heating. The pH and total residual chlorine were measured before and after heating. Collected water samples were carried to the laboratory and analyzed for eight DBPs and total organic carbon. Chloroform, bromodichloromethane, chloral hydrate, 1, 2-dichloro-2-propanone, 1, 1, 1-trichloropropanone, and dichloroacetonitrile were not detected following heating for 10 minutes and longer. The concentration of dichloroacetic acid (DCAA) was elevated with heating duration, resulting in the averages of 2.0, 3.1, 4.7, and 12 times the initial concentration, respectively, for 10, 20, 30, and 35 minute heating periods. On the other hand, the concentration of trichloroacetic acid (TCAA) decreased with heating duration, with 0.65, 0.40, 0.34, and 0.19 times lower than the initial concentration. Therefore, it is suggested that ingestion exposure to DCAA increases with heating duration but that ingestion exposure to TCAA decreases. In addition, while the amount of DCAA was elevated at the initial time periods (10 or 20 minutes) and then slowly decreased, that of TCAA was rapidly decreased. In conclusion, water-heating processes during cooking influence the concentrations of individual DBPs in the tap water, with lower levels for volatile DBPs and TCAA, and higher levels for DCAA. Therefore, concentration change needs to be taken into consideration in the estimation of human ingestion exposure to DBPs.

  • PDF

강원도 동해안 지역 정수장의 THMs 분포 (Distribution of THMs at Drinking Water Purification Plants in the East Coast Region of Gangwon-do)

  • 허인량;신용건;박성빈;이택수;심태흠
    • 한국환경보건학회지
    • /
    • 제39권3호
    • /
    • pp.223-229
    • /
    • 2013
  • Objectives: In an effort to examine the distribution of THMs (Trihalomethane) generated from chlorine disinfection by the drinking water treatment plants located on the east coast region of Gangwon-do, this study surveyed the distribution and concentrations of each component of THMs twice per month for 5 years from 2008 to 2012. Fluctuation pattern in the seasonal generation amount was identified. In addition, the correlation between the concentration of organic substances in water and THMs was assessed, along with stability of purified water quality supplied by the water treatment plants on the east coast by analyzing the composition ratio of each component that constitutes THMs and the detection frequency. Method: The research was done on purified water supplied by 29 water treatment plants in 7 cities and counties (Goseong-gun, Sokcho-si, Yangyang-gun, Gangneung-si, Donghae-si, Samcheok-si, Taebaek-si) located in Gangwon-do on the east coast. Water samples were collected twice a month from 2008 to 2012 and were investigate for chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform, based on analysis through Purge-Trap (Tekmar 3000) devices using FID-attached GC (HP 6890, Hewlett Packard). Result: THMs concentration detected at Gangneung-si was 0.0086mg/L, Goseong-gun 0.0019mg/L, Donghae-si 0.0099 mg/L, Samcheok-si 0.0016 mg/L, Sokcho-si 0.0057 mg/L, Yangyang-gun 0.0027 mg/L and Taebaek-si 0.0038 mg/L. As the THMs composition rate, chloroform constitutes 51.4% followed bybromodichloromethane 22.3%, bromoform 15.2% and dibromochloromethane 11.1% respectively. Conclusion: Throughout the entire THMs survey areas and period, the maximum concentration was 0.072mg/L, which did not exceed the water quality standards (0.1 mg/L), and the overall average concentration was very low at 0.0044 mg/L.

Clinical Importance of the Smear layer

  • Cho, Yong-Bum
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2002년도 추계학술대회
    • /
    • pp.720-720
    • /
    • 2002
  • A number of investigations have shown that the presence of bacteria is prerequisite for developing pulpal and/or periradicular pathosis. Depending on the stage of pulpal pathosis, various species of bacteria can be cultured from infected root canals. Kakehashi et al. showed that exposure of pulpal tissue in germ-free rats was characterized by minimal inflammation and dentinal bridging while exposure of pulpal tissue in conventional rats with normal oral flora was characterized by pulpal necrosis, chronic inflammation, and periapical lesions. Currently used methods of cleaning and shaping, especially rotary instrumentation techniques, produce a smear layer that covers root canal walls and the openings to the dentinal tubules. The smear layer contains inorganic and organic substances that include fragments of odontoblastic processes, microorganisms, their by products and necrotic materials. Because of its potential contamination and adverse effect on the outcome of root canal therapy, it seems reasonable to suggest removal of the smear layer for disinfection of the entire root canal system. Presence of this smear layer prevents penetration of intracanal medications into the irregularities of the root canal system and the dentinal tubules and also prevents complete adaptation of obturation materials to the prepared root canal surfaces. Removal of the smear layer by an intracanal irrigant and placement of an antibacterial agent in direct contact with the content of dentinal tubules should allow disinfection of this complex system and better outcome for the root canal therapy. A new solution, which was a mixture of a tetracycline, an acid, and a detergent(MTAD), was developed in the Department of Endodontics, Dental School. Lorna Linda University, USA. It has been demonstrated that MTAD was an effective solution for the removal of the smear layer and does not significantly change the structure of the dentinal tubules when used as a final irrigant in conjunction with 1 % NaOCl as a root canal irrigant. Studies are in progress to compare the anti- microbial properties of this newly developed solution with those of sodium hypochlorite and EDTA that are currently used to irrigate the root canals and remove the smear layer from the surfaces of instrumented root canals.canals.

  • PDF

D 정수처리장에서 소독부산물 발생 및 종분포 특성 (The Characteristics of Disinfection by-products Occurrence and Speciation in D Water Treatment Processes)

  • 김성준;김종민;전용태;박종은;원찬희
    • 한국물환경학회지
    • /
    • 제26권3호
    • /
    • pp.406-412
    • /
    • 2010
  • Concentrations and speciations of Trihalomethanes (THMs) and Haloacetic acids ($HAA_5$) that can be formed during chlorine disinfection by-product (DBPs) in full-scale drinking water treatment plants were investigated. Jeon-ju D water treatment plant that adopted conventional water treatment processes was chosen for investigation. SUVA values according to water treatment process changes were observed from 1.3 to 2.1. The process average concentrations of THMs was 7.4 ppb, 9.0 ppb and 14.7 ppb respectively, while the average concentrations of $HAA_5$ by each process which are precipitation water, filterater water, treated water, were 15.5 ppb, 14.9 ppb and 25.8 ppb respectively. DBPs concentrations was lower in the winter than summer. The major species of THMs was chloroform and the second highest was bromodichloromethane (BDCM) and the third highest was dibromochloromethane (DBCM). In case of $HAA_5$, the rate of trichloroacetic acid (TCAA) was detected. The species disribution of THMs is related to the change of SUVA and species disribution of $HAA_5$ is related to the concentrations of bromine and injection position of chlorine and injection quantity.

음용수내 발암물질인 염소 소독부산물의 전기화학적 제거 특성 (Electrochemical Removal Characteristics of Disinfection By-products by Chlorination in Drinking Water)

  • 권순우;이종대;신장식
    • 한국응용과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.364-369
    • /
    • 2004
  • It has been confirmed that some Trihalomethanes (THMs) suspected as carcinogens, can be formed during chlorination for water supply through the reaction of chlorine and humic substances in water. The electrochemical characteristics on activated carbon fiber filter (ACF) electrode were investigated to remove the THMs in the chlorination process of drinking water. The electrochemical removal efficiency depended on the applied voltage and flow rate. In this study, the best result showed that the removal efficiency of THMs was higher than 99%.