• 제목/요약/키워드: disinfection by-products

검색결과 140건 처리시간 0.03초

오존, 오존/과산화수소와 오존/활성탄 처리에 의한 페놀 및 그 부산물의 제거에 관한 연구 (A Study on Removal of Phenol and Its By-Product by Ozone, Ozone/Hydrogen Peroxide and Ozone/Granular Activated Carbon)

  • 배현주;김영규;정문호
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.121-129
    • /
    • 1997
  • This study was performed to delineate the removal phenol in solutions using of ozone, ozone/$H_2O_2$ and ozone/GAC. The disinfection by-product of phenol by ozonation, hydroquinone, was analyzed and it's control process was investigated. The followings are the conclusions that were derived from this study. 1. The removal efficiency of phenol by ozonation was 58.37%, 48.34%, 42.15%, and 35.41% which the initial concentration of phenol was 5 mg/l, 10 mg/l, 15 mg/l, and 20 mg/l, respectively. 2. The removal efficiency of phenol by ozonation was 42.95% at pH 4.0 and 69.39% at pH 10, respectively. The removal efficiencies were gradually increased, as pH values were increased. 3. With the ozone/$H_2O_2$ combined system, the removal efficiency of phenol was 72.87%. It showed a more complete degradation of phenol with ozone/$H_2O_2$ compared with ozone alone. 4. When ozonation was followed by filtration on GAC, phenol was completely removed. 5. Oxidation, if carried to completion, truly destroys the organic compounds, converting them to carbon dioxide. Unless reaction completely processed, disinfection by-products would be produced. To remove them, ozone/GAC treatment was used. The results showed that disinfection by-product of phenol by ozonation, hydroquinone, was completely removed. These results suggested that ozone/GAC should also be an appropriate way to remove phenol and its by-product.

  • PDF

다기능 방역 소독기 개발 (Development of Multi-function Disinfection Sterilizer)

  • 조현섭;박종선;이광련;유인호;정영석;김대성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2495-2496
    • /
    • 2002
  • Most of existing disinfection sterilizer had used mist method that burn chemicals and dust with them by putting chemicals in the course of explosion using gasoline. But, that method is not used because of environmental pollution, and spray method using a high-pressure pump is used in an advanced country. These method is very effective than existing mist method because the effect of chemicals can be appeared as it is when spray chemicals. This research will develop completely automatic multi-function disinfection sterilizer in the first at home that can be liberally used by oneself in order to alternate existing products need addition manpower and can be easily used at a place where sources of electricity is not by using gasoline engine to solve inconvenience by the use of electricity, and can be literally operated above and below, right and left in a driver's seat when is loaded in vehicles.

  • PDF

개질 Clay를 첨가한 응집공정에서의 자연유기물 제거 (Removal of NOM in a Coagulation Process Enhanced by Modified Clay)

  • 박지혜;이상윤;박흥석
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

정수처리공정에서 NOM 거동과 소독부산물 발생특성 (Characterization of NOM Behavior and DBPs Formation in Water Treatment Processes)

  • 김상은;구윤희;유명진;장현성;이수원;한선희
    • 상하수도학회지
    • /
    • 제21권4호
    • /
    • pp.395-407
    • /
    • 2007
  • Disinfection by-products(DBPs) are formed through the reaction between chlorine and natural organic matter(NOM) in water treatment. For reducing the formation of chlorinated DBPs in the drinking water treatment, there is a need to evaluate the behavior of NOM fractions and the occurrence of DBPs for each fraction. Among the six fractions of NOM, the removal of HPOA and HPIN got accomplished through coagulation and sedimentation processes. Advanced water treatment processes were found to be most significant to remove the HPOA and HPON. It was found that HPOA made the most THMFP level than any other fractions and HPIA and HPOA formed higher HAAFP. The fraction of NOM with MW less than 1k Da was 32.5~54.3% in intake raw water. Mostly the organic matter with MW more than 1k Da was removed through coagulation and sedimentation in the drinking water treatment processes. In case of advanced water treatment processes, the organic matter with MW 1k~100k Da decreased by means of ozone oxidation for high molecular weight substances. As the result low molecular organic matter increased. In the BAC and GAC processes, the organic matter with MW less than 100k Da decreased.

가정에서 수돗물 사용 중에 방출되는 chloroform에 대한 흡입노출 (Inhalation Exposure to Chloroform Released from Household Uses of Chlorinated Tap Water)

  • 신혜숙;김희갑
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.120-125
    • /
    • 2004
  • Exposure to volatile disinfection by-products (DBPs) such as chloroform included in chlorinated tap water can occur during household activities via inhalation as well as ingestion and dermal absorption. This study was conducted to examine the significance of inhalation route of exposure since humans are unintentionally exposed to volatile DBPs while staying home. Two sets of experiments were carried out in an apartment to measure: 1) the variation of chloroform concentrations in the living room air following kitchen activities (cooking and dish-washing); and 2) the variation of chloroform concentrations in the bathroom and living room following showering. Cooking, dish-washing, and showering all contributed to the elevation of household chloroform levels. Even a few minutes of natural ventilation resulted in the reduction of the chloroform levels to the background. Estimates of daily chloroform doses and lifetime cancer risks suggested that inhalation of household air during staying home be a major route of exposure to chloroform and that ingestion be a minor one in Korean people. It is also suggested that ventilation be a simple and important measure of mitigating human exposure to volatile DBPs indoors.

2계면 플라즈마 방전시스템(DBD System)의 특징 및 소독제로서 방전수의 사용가능성에 대한 연구 (Study on the Characteristics of Dielectric Barrier Discharging System and Usability as a Disinfectant)

  • 류승민;박희경;이봉주
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.529-536
    • /
    • 2004
  • Innovated technique to inactivate microorganisms has been developed. This technique uses plasma discharge in 2-phase (Air-Water). Dielectric Barrier (two phase) Discharging system is able to produce new oxidants for microorganisms. Products from discharging are $HNO_2$, $NO_2{^-}$, $HNO_3$, $NO_3{^-}$ and ozone but many other radicals can be generated as well. DBD water has low concentration of ozone (about 0.5mg/L), $NO_2{^-}$, $NO_3{^-}$ (about 10mg-N/L, 20mg-N/L respectively) and lots of $H^+$. These products play an important role in oxidation. Oxidation power by KI titration methods is approximately equivalent to $50mg-O_3/L$. Surprisingly stored DBD water could oxidize KI and maintain stable pH (about pH3) even after several days. Stored DBD water for 5 days has also more than 4log disinfection power to E. coli. However, DBD water cannot be used for drinking water directly due to it's toxicity. Additional process to neutralize pH and decrease toxicity must be applied.

펄스 UV 램프를 이용한 미생물 소독 및 2-MIB 제거 특성 (Characteristics of Disinfection and Removal of 2-MIB Using Pulse UV Lamp)

  • 안영석;양동진;채선하;임재림;이경혁
    • 상하수도학회지
    • /
    • 제23권1호
    • /
    • pp.69-75
    • /
    • 2009
  • The characteristics of disinfection and organic removal were investigated with pulse UV lamp in this study. The intensity and emission wavelength of pulse UV Lamp were compared with low pressure UV lamp. The emission spectrum range of pulse UV lamp was between 200 and 400 nm while the emission spectrum of low pressure UV lamp was only single wavelength of 254nm. 3 Log inactivation rate of B. subtilis spore by pulse UV and low pressure UV irradiation was determined as $44.71mJ/cm^2$ and $57.7mJ/cm^2$, respectively. This results implied that wide range of emission spectrum is more effective compared to single wavelength emission at 254nm. 500ng/L of initial 2-MIB concentration was investigated on the removal efficiency by UV only and $UV/H_2O_2$ process. The removal efficiency of UV only process achieved approximately 80% at $8,600mJ/cm^2$ dose. 2-MIB removal rate of $UV/H_2O_2$ (5 mg/L $H_2O_2$) process was 25 times increased compared to UV only process. DOC removal efficiency for the water treatment plant effluent was examined. The removal efficiency of DOC by UV and $UV/H_2O_2$ was no more than 20%. Removal efficiency of THMFP(Trihalomethane Formation Potential), one of the chlorination disinfection by-products, is determined on the UV irradiation and $UV/H_2O_2$ process. Maximum removal efficiency of THMFP was approximately 23%. This result indicates that more stable chemical structures of NOM(Natural Organic Matter) than low molecule compounds such as 2-MIB, hydrogen peroxide and other pollutants affect low removal efficiency for UV photolysis. Consequently, pulse UV lamp is more efficient compared to low pressure lamp in terms of disinfection due to it's broad wavelength emission of UV. Additional effect of pulse UV is to take place the reactions of both direct photolysis to remove micro organics and disinfection simultaneously. It is also expected that hydrogen peroxide enable to enhance the oxidation efficiency on the pulse UV irradiation due to formation of OH radical.

금속산화물센서의 이산화염소 가스에 대한 감지거동에 관한 연구 (A Study on the Detection Behavior of Chlorine Dioxide on Metal Oxide Sensors)

  • 유준부;변형기
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.211-214
    • /
    • 2020
  • Chlorine dioxide is very effective gas for sterilization or disinfection (in manufacturing), and does not produce harmful by-products after use. However, if its concentration exceeds 10 %, it become explosive and cannot be compressed or stored. Therefore, it is necessary to measure its concentration. In this study, the concentration of chlorine dioxide with a high oxidizing strength was measured using a metal oxide sensor. The sensor was a commercially available TGS series from Figaro. The sensitivity of the sensor was inversely proportional to a low concentration of chlorine dioxide gas below 6 ppm and returned to the initial resistance at about 6 ppm. When the gas concentration reached multiples of 10 ppm, resistance of the sensor increased to several megaohms.