• Title/Summary/Keyword: disease resistance soybean

Search Result 65, Processing Time 0.034 seconds

High-throughput SNP Genotyping by Melting Curve Analysis for Resistance to Southern Root-knot Nematode and Frogeye Leaf Spot in Soybean

  • Ha, Bo-Keun;Boerma, H. Roger
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.91-100
    • /
    • 2008
  • Melting curve analysis of fluorescently labeled DNA fragments is used extensively for genotyping single nucleotide polymorphism(SNP). Here, we evaluated a SNP genotyping method by melting curve analysis with the two probe chemistries in a 384-well plate format on a Roche LightCycler 480. The HybProbe chemistry is based on the fluorescence resonance energy transfer(FRET) and the SimpleProbe chemistry uses a terminal self-quenching fluorophore. We evaluated FRET HybProbes and SimpleProbes for two SNP sites closely linked to two quantitative trait loci(QTL) for southern root-knot nematode resistance. These probes were used to genotype the two parents and 94 $F_2$ plants from the cross of PI 96354$\times$Bossier. The SNP genotypes of all samples determined by the LightCycler software agreed with previously determined SSR genotypes and the SNP genotypes determined on a Luminex 100 flow cytometry instrument. Multiplexed HybProbes for the two SNPs showed a 98.4% success rate and 100% concordance between repeats two of the same 96 DNA samples. Also, we developed a HybProbe assay for the Rcs3 gene conditioning broad resistance to the frogeye leaf spot(FLS) disease. The LightCycler 480 provides rapid PCR on 384-well plate and allows simultaneous amplification and analysis in approximately 2 hours without any additional steps after amplification. This allowed for a reduction of the potential contamination of PCR products, simplicity, and enablement of a streamlined workflow. The melting curve analysis on the LightCycler 480 provided high-throughput and rapid SNP genotyping and appears highly effective for marker-assisted selection in soybean.

  • PDF

Development of Molecular Markers Conferring Bacterial Leaf Pustule Resistance Gene, rxp, using Resistant and Susceptible Cultivars in Soybean (콩 불마름병 저항성 및 감수성 품종을 이용한 rxp 유전자 근접 분자표지 개발)

  • Yang, Kiwoung;Lee, Yeong Hoon;Ko, Jong Min;Jeon, Myeong Gi;Lee, Byong Won;Kim, Hyun Tae;Yun, Hong Tae;Jung, Chan Sik;Baek, In Youl
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.282-287
    • /
    • 2011
  • Bacterial pustule (BP) is a leaf disease of soybean that is most common in Korea. Inoculation of 8ra, pathogen strain, to resistant and susceptible cultivars for finding the BP resistance gene (rxp) was much tried but the sequence of the exact gene is not found. This research performed in order to confirm the rxp gene near molecular marker by using the resistant and susceptible cultivars. Soybean BP resistance gene which related to region of near molecular marker could select the resistant cultivar. For the near molecular marker of rxp, reference genomics data available at sequenced Phytozome was used for designing molecular markers. The rxp was mapped between Satt372 and Satt486 on chromosome 17. According to previous study, rxp released in find mapping 7.2 Mbp to 7.3 Mbp on chromosome 17. In this study, we developed 3 random markers near from 6.6 Mbp to 7.3 Mbp on chromosome 17 identified to increase the genetic resolution of the rxp gene region using resistant and susceptible cultivars. Particularly, Rxp17-700 marker was mostly coincided resistance and susceptible genotype to rxp. This result suggests that Rxp17-700 marker will be more tightly linked to rxp gene.

Hairs as Physical Barrier against Adhesion of Xanthomonas axonopodis pv. glycines on Soybean Leaf (콩 잎 엽모에 의한 불마름병균 부착 저해)

  • Kim, Seung-Han;Park, Seuk-Hee;Woo, Jin-Ha;Choi, Sung-Young
    • Research in Plant Disease
    • /
    • v.21 no.1
    • /
    • pp.40-43
    • /
    • 2015
  • Bacterial pustule of soybean is caused by Xanthomonas axonopodis pv. glycines, one of the most important diseases in soybean. The symptom of bacterial pustule is mainly distributed around leaf veins. However, the reason has not been known. In order to determine pathosystem of bacterial pustule in leaf, soybean leaves were collected and observed using scanning electron microscopy (SEM) and light microscopy. Many hairs were observed at abaxial sides of the leaf, few hairs were observed at tissue around the leaf veins. In addition, unidentified bacterial cells and dusts at the no hair part near veins were observed. In the inoculation assays, the cells of X. axonopodis pv. glycines were observed near leaf veins. The imprint of underside of soybean leaves inoculated with X.axonopodis pv. glycines on PDA showed that the growth of bacteria around veins was observed but no bacterial growth at the part with leaf hairs. Our data demonstrated that soybean leaf hairs play an important role as a physical barrier for structural resistance of soybean against bacterial pustule pathogen.

Effects of Pseudomonas aureofaciens 63-28 on Defense Responses in Soybean Plants Infected by Rhizoctonia solani

  • Jung, Woo-Jin;Park, Ro-Dong;Mabood, Fazli;Souleimanov, Alfred;Smith, Donald L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.379-386
    • /
    • 2011
  • The objective of this work was to investigate the ability of the plant growth-promoting rhizobacterium Pseudomonas aureofaciens 63-28 to induce plant defense systems, including defense-related enzyme levels and expression of defense-related isoenzymes, and isoflavone production, leading to improved resistance to the phytopathogen Rhizoctonia solani AG-4 in soybean seedlings. Seven-day-old soybean seedlings were inoculated with P. aureofaciens 63-28, R. solani AG-4, or P. aureofaciens 63-28 plus R. solani AG-4 (P+R), or not inoculated (control). After 7 days of incubation, roots treated with R. solani AG-4 had obvious damping-off symptoms, but P+R-treated soybean plants had less disease development, indicating suppression of R. solani AG-4 in soybean seedlings. Superoxide dismutase (SOD) and catalase (CAT) activities of R. solani AG-4-treated roots increased by 24.6% and 54.0%, respectively, compared with control roots. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities of R. solani AG-4-treated roots were increased by 75.1% and 23.6%, respectively. Polyphenol oxidase (PPO) activity in soybean roots challenged with P. aureofaciens 63-28 and P+R increased by 25.0% and 11.6%, respectively. Mn-SOD (S1 band on gel) and Fe-SOD (S2) were strongly induced in P+R-treated roots, whereas one CAT (C1) and one APX (A3) were strongly induced in R. solani AG-4- treated roots. The total isoflavone concentration in P+Rtreated shoots was 27.2% greater than the control treatment. The isoflavone yield of R. solani AG-4-treated shoots was 60.9% less than the control.

Studies on Breeding for Disease and Insect Resistant Soybean Variety II. Resistance to Soybean Cyst Nematode (Heterodera glycines I.) by Soybean Variety (대두 내병충성 품종육성에 관한 연구 제2보 대두씨스트 선충(Heterodera glycines I.)에 대한 대두품종의 저갱성)

  • 박문수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.4
    • /
    • pp.324-331
    • /
    • 1981
  • Sixty five soybean varieties were tested to observe varietal response and to get the basic data for resistant variety breeding to soybean cyst nematode (Heterodera glycines I.). They were classified into five groups, from the most resistant to the most susceptible by decreasing rate of seed weight. A few Korean varieties were included in the most resistant group. In general, early maturing varieties were more susceptible. Total plant weight could be used as an important criterion to select a resistant variety to soybean cyst nematode.

  • PDF

Identification of Quantitative Trait Loci Associated with Resistance to Bacterial Pustule (Xanthomonas axonopodis pv. glycines) in Soybean (SSR 분자표지이용 콩 불마름병 저항성 관여 양적형질 유전자좌(QTL) 분석)

  • Seo, MinJung;Kang, Sung-Taeg;Moon, Jung-Kyung;Lee, Seukki;Kim, Yul-Ho;Jeong, Kwang-Ho;Yun, Hong-Tae
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.456-462
    • /
    • 2009
  • Bacterial pustule (BP), caused by Xanthomonas axonopodis pv. glycines, is prevalent disease in major soybean production areas. BP can reduce seed yield as well as seed quality. To identify the genomic region associated with the resistance to BP, QTL analysis was conducted using $F_{10}$ RIL (recombinant inbred lines) population, Keunolkong${\times}$Shinpaldalkong. Four QTLs for BP disease were identified on the linkage group B2, D2, I and K in field accounts for 36.4% of the phenotypic variation. Especially, QTL at near of Satt135 on LG D2 was identified in green house experiment explaining 20.9% of the phenotypic variation was found to be a major QTL conferring BP. One of these QTLs, Satt135 on the LG D2, was also identified in green house experiment. In both field and green house condition, the position of major QTL for BP was detected between Satt135 and Satt397 on the LG D2. The major QTL for BP may be used for minimizing soybean BP through effective marker-assisted selection (MAS).

Growth Characteristics and Yield Potentials of Soybeans in Upland and Paddy Field (전과 답에서의 콩 생육특성과 수량성)

  • 황영현;박상구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.4
    • /
    • pp.336-342
    • /
    • 1993
  • To obtain the basic information necessary for the development of soybean varieties well adaptable to upland-paddy field rotational croppings, the difference of growth characteristics between upland and paddy-field including yield potentials of current recommending soybean varieties were evaluated. The growth characteristics, both above and under-ground, which were measured at flowering stage were generally greater in paddy-field but the number of root nodules was much greater in upland, thus the artificial inoculation was practically recommended for soybean growing in paddy-fields. Mean seed yield was generally higher in paddy-fields than in upland. All soybean varieties showed higher seed yield in the early planting date, April 20, were somewhat susceptible to soybean mosaic virus(SMV), thus they could be escaped from the disasterous endemic necrotic soybean mosaic virus(SMV-N). Soybean varieties showed over 4.0 tons/ha seed yield in the paddy-field were Williams 79, Union, SS77053, and Namhaekong. At the same time, Jangyeobkong and Danyeobkong were the most stable soybean varieties among the tested soybean varieties with less than 10% of coefficient variation values in all planting dates in paddy fields. Compared with Hwangkeumkong which is most widely being cultivated on farmer's fields, soybean varieties showed high yields in paddy-field were higher in plant height, less in the number of branches, and more in the number of nodes on main stem. At the same time, they had medium seed size which would bring the good germination and stands. Disease resistance especially for necrotic soybean mosaic virus was also one of the most decisive factors in seed yields for the early planted soybeans.

  • PDF

Identifications of a Sprout-Rot Pathogen Pseudomonas Species SN239 and Selection Resistant Soybean Line (콩나물 부패균 Pseudomonas sp. SN239 동정과 콩나물 부패병 내병성 계통 선발)

  • Lim, Jong-Soo;Do, Kum-Sook;Lee, Dong-Sun;Kang, Sang-Gu;Suh, Sang-Gon;Park, Eui-Ho
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1771-1774
    • /
    • 2008
  • Control microbial contamination in pathogens to soy sprouts has always been highly concerned in soybean sprout industries because the soybean sprouts are consumed largely as a nutritious fresh vegetable around the world. However, pathogens in soy sprouts are little known. Here, we isolated a strain of Pseudomonas sp. SN239 that caused severer symptoms in sprouts of many soybean cultivars. In phylogenetic relationships using 16S ribosomal RNA sequences of the Pseudomonas species, the identified Pseudomonas sp. SN239 was grouped with P. putita, P. plecoglossicida, P. monteilii and P. mevalonii. Thus, the bacterial strain SN239 might be a newly identified Pseudomonas species which closely related to P. putida. Furthermore, we found that a Korean indigenous soybean (Glycine max) cultivar YNPCSS3-19 has strong resistance against the Pseudomonas sp. SN239.