Existing LDA uses the transform matrix that maximizes distance between classes. So we have to convert from an image to one-dimensional vector as training vector. However, in 2D-LDA, we can directly use two-dimensional image itself as training matrix, so that the classification performance can be enhanced about 20% comparing LDA, since the training matrix preserves the spatial information of two-dimensional image. However 2D-LDA uses same calculation schema for transformation matrix and therefore both LDA and 2D-LDA has the heteroscedastic problem which means that the class classification cannot obtain beneficial information of spatial distances of class clusters since LDA uses only data correlation-based covariance matrix of the training data without any reference to distances between classes. In this paper, we propose a new method to apply training matrix of 2D-LDA by using WPS-LDA idea that calculates the reciprocal of distance between classes and apply this weight to between class scatter matrix. The experimental result shows that the discriminating power of proposed 2D-LDA with weighted between class scatter has been improved up to 2% than original 2D-LDA. This method has good performance, especially when the distance between two classes is very close and the dimension of projection axis is low.
Journal of the Korean Society of Clothing and Textiles
/
v.11
no.2
s.24
/
pp.1-11
/
1987
The purpose of this study was to develope a questionaire measuring clothing behavior of elementary school children. At first, after pretest, the clothing behavior questionaire consisted of 70 items which were devidad. into 7 subscales i.e. Clothing interest. Clothing satisfaction. Clothing management, Clothing sex-role. Clothing comfort. Clothing conformity. and Clothing independence. Each item was rated on a 3-point scale. Samples were 447 boys and girls (4 th, 5 th, 6 th grade) of three elementary schools in Seoul. Korea. The data were analyzed by item analysis and factor analysis. Factor analysis was useful in attempting to establish contruct validity. Item validity was examined based on the correlation coefficients and item discriminating power through the chi-square. Reliability was examined based on the Cronbach's Alpha Reliability Coefficient and test-retest method. With this analysis the subscales were reconstructed to following 6 factors. Clothing conformity items were not clustered by the factor analysis. 52 items of 6 factors selected by the analysis. The factors characteristics were as follows: 1. Clothing interest (10 items) 2. Clothing satisfaction (11 items) 3. Clothing management (8 items) 4. Clothing sex-role (12 items) 5. Clothing comfort (6 items) 6. Clothing independence (5 items)
The shielded metal arc welding (SMAW) by AC power source was performed to evaluate the arc stability by arc monitoring and analysing. In this study, the arc stability index was evaluated quantitatively by using he coefficient of resistance variation for welding time. This coefficient was obtained for the long time (20sec.) by analysing the waveforms of welding current, voltage and resistance. The coefficient was applied to indicate numerically the variation level of arc length and the degree of arc extinction. Using the coefficient of resistance variation in practical welding, the arc stability of the high titanium oxide electrode (KS E4313) turned out to be better than that of the low hydrogen electrode (KS E4316). In evaluating the skill level of welders by the coefficient, the horizontal fillet weaving welding became clear to be very discriminating because the higher level welder could weave in keeping constant arc length, but the lower level welder showed the characteristics of weaving with the unstable arc length. And it was confirmed that the welding defects as blow holes was formed when the arc stability index were high.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.2
s.308
/
pp.72-80
/
2006
In this paper, we propose a new descriptor for 3D model retrieval based on shape information. The proposed method consists of two steps including ray casting method and spherical harmonic function, considering geometric properties of model. In the ray casting method, an adaptive sampling is performed for external shape information. By increasing shape information included in the descriptor, we improve the discriminating power of the proposed descriptor. The coefficients of spherical harmonic function are adaptively calculated, considering geometric frequency characteristics. This makes the descriptor more compact and concise without decreasing the retrieval performance. By combining two methods, we achieve more improved retrieval results.
Lee, Jihye;Kang, Heeyoon;Kim, Sarang;Yoo, Heekyung;Kim, Hee Jin;Park, Young Kil
Tuberculosis and Respiratory Diseases
/
v.76
no.2
/
pp.59-65
/
2014
Background: Variable-number tandem repeat (VNTR) typing is a promising method to discriminate the Mycobacterium tuberculosis isolates in molecular epidemiology. The purpose of this study is to determine the optimal VNTR combinations for discriminating isolated M. tuberculosis strains in Korea. Methods: A total of 317 clinical isolates collected throughout Korea were genotyped by using the IS6110 restriction fragment length polymorphism (RFLP), and then analysed for the number of VNTR copies from 32 VNTR loci. Results: The results of discriminatory power according to diverse combinations were as follows: 25 clusters in 83 strains were yielded from the internationally standardized 15 VNTR loci (Hunter-Gaston discriminatory index [HGDI], 0.9958), 25 clusters in 65 strains by using IS6110 RFLP (HGDI, 0.9977), 14 clusters in 32 strains in 12 hyper-variable VNTR loci (HGDI, 0.9995), 6 clusters in 13 strains in 32 VNTR loci (HDGI, 0.9998), and 7 clusters in 14 strains of both the 12 hyper-variable VNTR and IS6110 RFLP (HDGI, 0.9999). Conclusion: The combination of 12 hyper-variable VNTR typing can be an effective tool for genotyping Korean M. tuberculosis isolates where the Beijing strains are predominant.
The purpose of this study is to develop a test, which can be used in creative problem solving ability in mathematics of the mathematically gifted and the regular students. This test tool is composed of three categories; fluency (number of responses), flexibility (number of different kinds of responses), and originality (degree of uniqueness of responses) which are the factors of the creativity. After applying to 462 middle school students, this test was analyzed into item analysis. As a results of item analysis, it turned out to be meaningful (reliability: 0.80, validity: item 1(1.05), item 2(1.10), item 3(0.85), item 4(0.90), item 5(1.08), item difficulty: item 1(-0.22), item 2(-0.41), item 3(0.23), item 4(0.40), item 5(-0.01), item discriminating power: item 1(0.73), item 2(0.73), item 3(0.67), item 4(0.51), item 5(0.56), over the level of a standard basis. This means that the test tool was useful in the test process of creative problem solving ability in mathematics
Journal of the Korea Institute of Information and Communication Engineering
/
v.12
no.1
/
pp.196-204
/
2008
In this paper, we propose an efficient method to classify human facial impression using frontal face image. The features that represent the shape of eye, jaw and face are used. The proposed method employs PCA, LDA and SVM in series. PCA is used to project the feature space to a low dimensional subspace. LDA produces well separated classes in a low dimensional subspace even under severe variation. This results in good discriminating power for classification. SVM is used to classify the data. Human face has been classified for 8 facial impressions. The experiments have been performed for many face images, and show encouraging result.
Objective: This study aims to develop and validate the musicality level of an individual child, based on the on performance tasks rubrics. Methods: The survey was conducted on 284 children(ages 3-5years old from kindergartens and day care centers), their parents, and their 51 teachers. The collected data were calculated and analyzed using SPSS 22.0 and AMOS 22.0. Results: Consisted of two components, two task types, 17 performance tasks, and 41 items in three dimensions. Rubrics were determined and based on the child's best performance, and categorized into five levels. Lastly, the item difficulty and item discriminating power were defined in order to comprehend the item quality analysis, which showed that average scores varied depending on the performance. Conclusion/Implications: The musicality rating scale for young children is significant in order to comprehend musicality levels through the performances of children aged three to five. This study has educational implications in that teachers can connect the results of the ratings to curriculum and promote the development of teaching and learning methodologies based on the musicality levels of individual children.
Park, Jinhyun;Han, Seong-Jin;Munir, Nauman;Yeom, Yun-Taek;Song, Sung-Jin;Kim, Hak-Joon;Kwon, Se-Gon
Nuclear Engineering and Technology
/
v.51
no.7
/
pp.1784-1790
/
2019
Accurate and consistent characterization of defects in steam generator tubes (SGT) in nuclear power plants is one of the key issues in the field of nondestructive testing since the large number of signals to be analyzed in a time-limited in-service inspection causes a serious problem in practice. This paper presents an effective approach to this difficult task of automated classification of motorized rotating pancake coil (MRPC) eddy current flaw acquired from tube specimens with deliberated defects using deep neural networks (DNN). This approach consists of five steps, namely, the data acquisition using the MRPC probe in the tube, the signal preprocessing to make data more suitable for training DNN, the data augmentation for boosting a training performance, the training of DNN, and finally demonstration of the trained DNN for discriminating the axial and circumferential defects. The high performance obtained in this study shows that DNN is useful for classification of defects in tubes from the MRPC eddy current signals even though the number of signals is very large.
Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.