• Title/Summary/Keyword: discrete-element

Search Result 686, Processing Time 0.03 seconds

A Discrete Analysis of Dynamic Plastic Response of Beam-Columns (Beam-Column의 동적(動的) 역성(逆性) 응답(應答)에 관한 이산화(離散化) 해석(解析))

  • Sung-Hwan,Park;Chang-Doo,Jang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.43-51
    • /
    • 1987
  • In this paper, dynamic elastic, plastic response of beam-columns is analysed using discrete models. composed of rigid bars and springs. The equation of motion is formulated including the shear deformation effect, and the stress change of yielding points is calculated with various yielding criteria. The effect of initial axial force is considered by two ways: (1) including the effect in interaction curve only. (2) including the effect directly in the equation of motion in terms of initial stiffness method is also used in nonlinear interaction procedure. It is found that this model is very effective in analysing not only the plastic response but the elastic response, and present method is more efficient than Finite Element Method from the viewpoint of calculation time and accuracy.

  • PDF

On the numerical assessment of the separation zones in semirigid column base plate connections

  • Baniotopoulos, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.295-309
    • /
    • 1994
  • The present paper concerns the mathematical study and the numerical treatment of the problem of semirigid connections in bolted steel column base plates by taking into account the possibility of appearance of separation phenomena on the contact surface under certain loading conditions. In order to obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics, the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic optimization algorithms are proposed. This technique is illustrated by means of a numerical application.

New systolic arrays for computation of the 1-D and 2-D discrete wavelet transform (1차원 및 2차원 이산 웨이브렛 변환 계산을 위한 새로운 시스톨릭 어레이)

  • 반성범;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.132-140
    • /
    • 1997
  • This paper proposes systolic array architectures for compuataion of the 1-D and 2-D discrete wavelet transform (DWT). The proposed systolic array for compuataion of the 1-D DWT consists of L processing element (PE) arrays, where the PE array denotes the systolic array for computation of the one level DWT. The proposed PE array computes only the product terms that are required for further computation and the outputs of low and high frequency filters are computed in alternate clock cycles. Therefore, the proposed architecuter can compute the low and high frequency outputs using a single architecture. The proposed systolic array for computation of the 2-D DWT consists of two systolic array architectures for comutation of the 1-D DWT and memory unit. The required time and hardware cost of the proposed systolic arrays are comparable to those of the conventional architectures. However, the conventional architectures need extra processing units whereas the proposed architectures fo not. The proposed architectures can be applied to subband decomposition by simply changing the filter coefficients.

  • PDF

Transient Response Analysis of Trapezoidal Corrugated Plates with Stiffeners (보강된 사다리꼴 주름판의 과도 응답 해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.788-794
    • /
    • 2014
  • In this paper, the transient response analysis of the trapezoidal corrugated plate subjected to the pulse load is investigated by the theoretical method. Three types of pulse loads are considered: stepped, isosceles triangular and right triangular pulse loads. The corrugated plates can be represented as an orthotropic plate. Both the effective extensional and flexural stiffness of this equivalent orthotropic plate are considered in the analysis. The plate is stiffened by concentric stiffeners perpendicular to the corrugation direction. The stiffening effect is represented by the discrete stiffener theory. This theoretical results are validated by those obtained from 3D finite element analysis based on shell elements. Some numerical results are presented to check the effect of the geometric properties.

Using nanotechnology for improving the mechanical behavior of spherical impactor in sport problem via complex networks

  • Bo Jin Cheng;Peng Cheng;Lijun Wang
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.31-45
    • /
    • 2023
  • The network theory studies interconnection between discrete objects to find about the behavior of a collection of objects. Also, nanomaterials are a collection of discrete atoms interconnected together to perform a specific task of mechanical or/and electrical type. Therefore, it is reasonable to use the network theory in the study of behavior of super-molecule in sport nano-scale. In the current study, we aim to examine vibrational behavior of spherical nanostructured composite with different geometrical and materials properties. In this regard, a specific shear deformation displacement theory, classical elasticity theory and analytical solution to find the natural frequency of the spherical nano-composite sport structure equipment. The analytical results are validated by comparison to finite element (FE). Further, a detail comprehensive results of frequency variations are presented in terms of different parameters. It is revealed that the current methodology provides accurate results in comparison to FE results. On the other hand, different geometrical and weight fraction have influential role in determining frequency of the structure.

Progressive fracture analysis of concrete using finite elements with embedded displacement discontinuity

  • Song, Ha-Won;Shim, Byul;Woo, Seung-Min;Koo, Ja-Choon
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.591-604
    • /
    • 2001
  • In this paper, a finite element with embedded displacement discontinuity which eliminates the need for remeshing of elements in the discrete crack approach is applied for the progressive fracture analysis of concrete structures. A finite element formulation is implemented with the extension of the principle of virtual work to a continuum which contains internal displacement discontinuity. By introducing a discontinuous displacement shape function into the finite element formulation, the displacement discontinuity is obtained within an element. By applying either a nonlinear or an idealized linear softening curve representing the fracture process zone (FPZ) of concrete as a constitutive equation to the displacement discontinuity, progressive fracture analysis of concrete structures is performed. In this analysis, localized progressive fracture simultaneous with crack closure in concrete structures under mixed mode loading is simulated by adopting the unloading path in the softening curve. Several examples demonstrate the capability of the analytical technique for the progressive fracture analysis of concrete structures.

Evaluation of the Relationship between Geogrid Rib Size and Particle Size Distribution of Ballast Materials using Discrete Element Method (개별요소해석법을 이용한 지오그리드 격자 크기와 도상자갈재료 입도분포 상관관계 평가)

  • Pi, Ji-Hyun;Oh, Jeongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • This study evaluated the shear behavior of geogrid reinforced ballast material using a large scale direct shear test and discrete element method (DEM) based on PFC 3D program. The direct shear test was conducted on ballast materials that have different particle size distributions. Whereas the test results revealed that the shear strength generally increased with the larger particle size of ballast material without geogrid reinforcement, the shear behavior of ballast material was found to change pertaining to the relationship between particle size distribution and geogrid rib size. Generally, it is deemed the effectiveness of reinforcement can be achieved when the rib size is two times greater than average particle size. A numerical analysis based on DEM was conducted to verify the test results. The geogrid modeling was successfully completed by calibration process along with sensitivity analysis to have actual tensile strength provided by manufacturer. With a given geogrid model, the parametric evaluation was further carried out to examine the interactive behavior between geogrid and ballast material. Consequently, it was found that the effectiveness zone of geogrid reinforcement generated within a specific depth.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.496-507
    • /
    • 2020
  • A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

Evaluation of Screw Conveyor Model Performance depending on the Inclined Angle by Discrete Element Method (개별요소법을 활용한 경사각에 따른 스크루 컨베이어 모델 성능 평가)

  • Park, Byungkwan;Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.379-393
    • /
    • 2019
  • For the economical construction of a tunnel by TBM, the selection of TBM optimized with the various project conditions is important, and also necessary to predict the performances of selected TBM in advance. This study was conducted to comprehensively evaluate the performance of the EPB shield TBM screw conveyor by the discrete element method. The sticky particles were used for the excavated material models, and screw conveyor with 11 different inclined angles were simulated to evaluate the performance depending on the different inclined angles. The four different rotational speed conditions of the screw were used, and torque, required power, extra energy for muck discharge, and the muck discharge rate were selected as four performance indicators. As a result, the optimized inclined angle was selected, and selected angle accords with the fact that EPB shield TBM screw conveyor is generally installed and adjusted at the inclined angle between 20.0° and 30.0° in the field.

Preliminary study on a spoke-type EPB shield TBM by discrete element method (개별요소법을 활용한 스포크 타입 토압식 쉴드TBM의 예비 해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1029-1044
    • /
    • 2017
  • The Discrete Element Method (DEM) is one of the useful numerical methods to analyze the behavior of the ground formation by computing the motion and interaction using particles. The DEM has not been applied in civil engineering but also a wide range of industrial fields, such as chemical engineering, pharmacy, material science, food engineering, etc. In this study, to review a performance of the spoke-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine), the commercial software based on the DEM technology was used. An analysis of the TBM during excavation was conducted according to two pre-defined excavation conditions with the different rotation speed of a cutterhead. During the analysis, the resistant torque at the face of the cutterhead, the compressive force at the cutterhead and shield surface, the muck discharge at the screw auger were measured and compared. Upon the two kinds of excavation conditions, the applicability of the DEM analysis was reviewed as a modelling method for the TBM.