• Title/Summary/Keyword: discrete-analytical method

Search Result 107, Processing Time 0.023 seconds

Mobile Multicast Method using the User Pattern (사용자 성향에 기반한 이동 멀티캐스트 기법)

  • Sung Sulyun;Jeon Jinyong;Seo Yuhwa;Shin Yongtae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.46-54
    • /
    • 2005
  • This paper presents an effcient mobile multicast method using the user pattern. We exploit the repetitive movement pattern of mobile node to reduce the total number of experience of graft and join procedure. We defined the locality scope by a movement pattern. While the network is included in the locality scope, the network should maintain a multicast tree even when the mobile node moves to the other network. In this way, the mobile host can receive a multicast service without a delay when it moves to the network in the locality scope later. We compare our scheme with existing schemes under the total signaling cost and the service delay time by using a discrete analytical model for cost analysis. Analytical results demonstrated that the total signaling cost and service delay time was significantly reduced through our proposed scheme.

Comparison of Two- and Three-dimensional Approaches for the Numerical Determination of Equivalent Mechanical Properties of Fractured Rock Masses (균열암반의 역학적 등가물성의 수치해석적 결정을 위한 2차원 및 3차원 해석의 비교)

  • Min, Ki-Bok;Thoraval, Alain
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.93-105
    • /
    • 2012
  • This paper compares the two- and three-dimensional (2D and 3D) approaches for the numerical determination of the equivalent mechanical properties of fractured rock masses. Both orthogonally-fractured model and discrete fracture networks (DFN) were used for the geometry and 2D models were cut in various directions from 3D model to compare their mechanical properties. Geological data were loosely based on the data available from Sellafield, UK. Analytical method based on compliance tensor transformation was used for investigation in orthogonally fractured rock and numerical experiments were conducted on fractured rock mass with DFN geometry. It is shown that 2D approach always overestimates the elastic modulus of fractured rock masses by a factor of up to around two because fractures are assumed to be perpendicular to the model plane in 2D problems. Poisson ratios tend to have larger values in 2D analysis while there is opposite trend in some sections. The study quantitatively demonstrates the limitation of the 2D approach that uses the simplified model from true 3D geometry.

ALTERNATIVE NUMERICAL APPROACHES TO THE JUMP-DIFFUSION OPTION VALUATION

  • CHOI BYUNG WOOK;KI HO SAM;LEE MI YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.519-536
    • /
    • 2005
  • The purpose of this paper is to propose several approximating methods to obtain the American option prices under jump-diffusion processes. The first method is to extend an approximating method to the optimal exercise boundary by a multipiece exponential function suggested by Ju [17]. The second approach is to modify the analytical methods of MacMillan [20] and Zhang [25] in a discrete time space. The third approach is to apply the simulation technique of Ibanez and Zapareto [14] to the problem of American option pricing when the jumps are allowed. Finally, we compare the numerical performance of each suggesting method with those of the previous numerical approaches.

Numerical Analysis of Low-Speed Flows in Micro-Channels (마이크로채널 내부의 저속 유동장 수치해석)

  • Chung C. H.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.36-42
    • /
    • 2004
  • Low-speed gas flows in micro-channels are investigated using a kinetic theory analysis. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for flows in simple micro-channels and a micro-fluidic system consisting of two micro-channels in series. The results are compared well with those from the DSMC method and an analytical solutions to the Wavier-Stokes equations. It is shown that the present method is a useful tool for the modeling of low-speed flows in micro-channels.

Replacement Condition Detection of Railway Point Machines Using Data Cube and SVM (데이터 큐브 모델과 SVM을 이용한 철도 선로전환기의 교체시기 탐지)

  • Choi, Yongju;Oh, Jeeyoung;Park, Daihee;Chung, Yongwha;Kim, Hee-Young
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Railway point machines act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Since point failure caused by the aging effect can significantly affect railway operations with potentially disastrous consequences, replacement detection of point machine at an appropriate time is critical. In this paper, we propose a replacement condition detection method of point machine in railway condition monitoring systems using electrical current signals, after analyzing and relabeling domestic in-field replacement data by means of OLAP(On-Line Analytical Processing) operations in the multidimensional data cube into "does-not-need-to-be replaced" and "needs-to-be-replaced" data. The system enables extracting suitable feature vectors from the incoming electrical current signals by DWT(Discrete Wavelet Transform) with reduced feature dimensions using PCA(Principal Components Analysis), and employs SVM(Support Vector Machine) for the real-time replacement detection of point machine. Experimental results with in-field replacement data including points anomalies show that the system could detect the replacement conditions of railway point machines with accuracy exceeding 98%.

Validation of a Robust Flutter Prediction by Optimization

  • Chung, Chan-Hoon;Shin, Sang-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.43-57
    • /
    • 2012
  • In a modern aircraft, there are many variations in its mass, stiffness, and aerodynamic characteristics. Recently, an analytical approach was proposed, and this approach uses the idea of uncertainty to find out the most critical flight flutter boundary due to the variations in such aerodynamic characteristics. An analytical method that has been suggested to predict robust stability is the mu method. We previously analyzed the robust flutter boundary by using the mu method, and in that study, aerodynamic variations in the Mach number, atmospheric density, and flight speed were taken into consideration. The authors' previous attempt and the results are currently quoted as varying Mach number mu analysis. In the author's previous method, when the initial flight conditions were located far from the nominal flutter boundary, conservative predictions were obtained. However, relationships among those aerodynamic parameters were not applied. Thus, the varying Mach number mu analysis results required validation. Using an optimization approach, the varying Mach number mu analysis was found out to be capable of capturing a reasonable robust flutter boundary, i.e., with a low percentage difference from boundaries that were obtained by optimization. Regarding the optimization approach, a discrete nominal flutter boundary is to be obtained in advance, and based on that boundary, an interpolated function was established. Thus, the optimization approach required more computational effort for a larger number of uncertainty variables. And, this produced results similar to those from the mu method which had lower computational complexity. Thus, during the estimation of robust aeroelastic stability, the mu method was regarded as more efficient than the optimization method was. The mu method predicts reasonable results when an initial condition is located near the nominal flutter boundary, but it does not consider the relationships that are among the aerodynamic parameters, and its predictions are not very accurate when the initial condition is located far from the nominal flutter boundary. In order to provide predictions that are more accurate, the relationships among the uncertainties should also be included in the mu method.

A Study on the Reduction of Discrete Frequency Tones of a Cross-Flow Fan of Air-Conditioners -Studies on the Random Distribution of Fan Blades and the Skewed Stabilizers- (에어컨 용 횡단류 홴의 특정 주파수 소음 성분의 저감 대책에 관한 연구 -날개의 랜덤 배열과 경사진 스태빌라이저에 대한 연구-)

  • 구형모
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.870-878
    • /
    • 1998
  • The cross-flow fan which constitutes a fan-duct system with a stabilizer and a scroll casing is widely used in many air-ventilating and air-conditioning devices. Its ooperating points of high efficiency and loading conditions frequently induce a annoying sharp tonal component of discrete frequency on the noise spectrum, which is open called as a BPF(Blade-Passing-Frequency) noise and degrades the sound quality of the devices. this BPF tone has been one of the defects of the cross-flow fan. This study proposes two methods in order to reduce this tonal noise component, which are the random distributions of the fan blades and the skewed shapes of the stabilizer. The proposed methods are verified by a simple analytical model and are applied in manufacturing the cross-flow fan and the stabilizer samples. Some experiments are carried out to verify the reduction capability of BPF tones of above two schemes and the experimental results are analyzed. The comparison between two method is also carried out.

  • PDF

Vibration Analysis of Trapezoidal Corrugated Plates with Stiffeners and Lumped Masses (집중질량을 고려한 보강된 사다리꼴 주름판의 진동해석)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.414-420
    • /
    • 2014
  • In this paper, the vibration characteristics of the trapezoidal corrugated plate with axial stiffeners and lumped masses are investigated by the analytical method. The corrugated plate can be treated as an equivalent orthotropic plate as this plate has different flexure properties in two perpendicular directions; flexible in the corrugation direction and stiff in the transverse direction. The effective extensional and flexural stiffness of the equivalent plate are considered to obtain the precise solution in the analysis. The plate is stiffened by concentric stiffeners horizontally to the corrugation direction. The discrete stiffener theory is adopted to consider the position of stiffener. To demonstrate the validity of the proposed approach, the comparison is made with the results of 3D ANSYS finite element solutions. Some numerical results are presented to check the effect of the geometric properties.

Active Vibration Control of a Cylinder using Piezoceramic Actuator (축 방향 하중 전달 부재의 진동제어)

  • 김도형;최승주;박현철;황운봉
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.9-12
    • /
    • 2001
  • An active control of the vibration transmitted by longitudinal load in flight control system is investigated numerically. The flight control system is modeled as a finite, thin shell cylinder with constant thickness. A vibration source is generated by exterior monopole source. Distributed piezoelectric actuator is used to control of the vibration. Thin shell theory is used to formulate the numerical models. The amplitude of vibration at discrete location and power transmission are minimized by analytical optimization method. Genetic algorithm is used as numerical optimization method to search optimal actuator position and size which amplitude of vibration is minimized.

  • PDF

Active Vibration Control of a Cylindrical Rod Transmitting Axial Load (축 방향 하중 전달 부재의 진동제어)

  • Choe, Seung-Ju;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1950-1959
    • /
    • 2001
  • An active control of the vibration transmitted by longitudinal load in flight control system is investigated numerically. The flight control system is modeled as a finite, thin shell cylinder with constant thickness. A vibration source is generated by exterior monopole source. Distributed piezoelectric actuator is used to control of the vibration. Thin shell theory is used to formulate the numerical models. The amplitude of vibration at discrete location and power transmission are minimized by analytical optimization method. Genetic algorithm is used as numerical optimization method to search optimal actuator position and size which amplitude of vibration is minimized.