• Title/Summary/Keyword: discrete vortex method

검색결과 74건 처리시간 0.026초

진동하는 평판들에서의 플래핑 추진 (Flapping Propulsion of Oscillating Flat Plates)

  • 안준성;한철희;김창희;조진수
    • 한국항공우주학회지
    • /
    • 제32권10호
    • /
    • pp.118-126
    • /
    • 2004
  • 이산와류법(discrete vortex method)을 이용하여 진통하는 평판들로부터 추력발생을 연구하였다. 평판들과 후류들은 이산와류로 나타내었다. 진동하는 평판들 사이의 복잡한 공력상호작용을 정확히 계산하기 위하여 와핵모델(vortex core model)과 와핵첨가법(vortex core addition scheme)을 사용하였다. 단일 평판이 히빙진동을 할 경우 나타나는 후류를 계산하여 기존의 유동가시화 결과와 비교하였다. 피칭진동 시 평판에서 발생하는 후류형상이 평판들의 추진 특성에 미치는 영향을 조사하였다. 3가지 방식(1. 하나의 평판은 고정 다른 평판은 진동, 2. 두개의 평판이 같은 위상으로 진동, 3. 두개의 평판이 반대의 위상으로 진동)으로 진동하는 평판들의 추진특성을 계산하였다. 반대의 위상으로 진통하는 평판이 가장 큰 추진력을 보였다.

Karhunen-Loeve 변환을 이용한 Forcing 제트의 동적 특성 해석 (Dynamic characteristics analysis of forcing jet by Karhunen-Loeve transformation)

  • 이찬희;이상환
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.758-772
    • /
    • 1997
  • The snapshot method is introduced to approximate the coherent structures of planar forcing jet flow. The numerical simulation of flow field is simulated by discrete vortex method. With snapshot method we could treat the data efficiently and approximate coherent structures inhered in the planer jet flow. By forcing the jet at a sufficient amplitude and at a well-chosen frequency, the paring can be controlled in the region of the jet. Finally we expressed the underlying coherent structures of planar jet flow in the minimum number of modes by Karhunen-Loeve transformation in order to understand jet flow and to make the information storage and management in computers easier.

이산와류법을 사용한 비평면 지면 와류전개 연구 (Study on the Wake Evolution on the Non-Planar Ground Using a Discrete Vortex Method)

  • 한철희
    • 융복합기술연구소 논문집
    • /
    • 제6권2호
    • /
    • pp.21-24
    • /
    • 2016
  • Accurate simulation of wakeshapes behind a wing is important for the performance prediction of the aircraft and the wake hazard problem in the airport. In the present study, wakeshapes behind a wing inside tunnels are simulated in regard to the development of wing-in-ground effect vehicles. A discrete vortex method with a nonplanar ground modelling is used for the simulation. It was found that the wingtip vortices move toward outboard directions when the wing is in ground effect. When the wing is placed inside tunnels, the wingtip vortices move along the tunnel wall with counter clockwise direction. As the gap between the wingtip and the tunnel decreases, the wingtip vortices move further along the tunnel wall. Both vortices from bothsides of the wing will murge, which will be studied in future using a viscous computation.

Wake Shapes Behind Wings in Close Formation Flight Near the Ground

  • Han Cheolheui;Cho Leesang;Cho Jinsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.674-681
    • /
    • 2005
  • The unsteady evolution of trailing vortex sheets behind wings in close formation flight near the ground is simulated using a discrete vortex method. The ground effect is included by an image method. The method is validated by comparing computed results with other numerical results. For a lifting line with an elliptic loading, the ground has an effect of moving wingtip vortices laterally outward and suppressing the development of vortex evolution. The gap between wings in close formation flight has an effect of moving up wingtip vortices facing each other. For wings flying in parallel, the ground effect causes the wingtip vortices facing each other to move up, and it makes the opposite wing tip vortices to move laterally outward. When there is a relative height between the wings in ground effect, right-hand side wingtip vortices from a mothership move laterally inward.

Aeroelastic stability analysis of a bridge deck with added vanes using a discrete vortex method

  • Taylor, I.;Vezza, M.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.277-290
    • /
    • 2002
  • A two dimensional discrete vortex method (DIVEX) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The results from both the static and flutter analysis of the main deck in isolation are in good agreement with experimental data. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results confirm previous analytical and experimental studies. The aeroelastic study is carried out firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are then assessed further by presenting results from full time-dependent aeroelastic solutions for the original deck and one of the vane cases. In general, the results show good qualitative and quantitative agreement with results from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineering.

음향교란을 받는 난류박리기포의 이산와류 수치해석 (Discrete-vortex Simulation of Turbulent Separation Bubble Excited by Acoustic Perturbatioons)

  • 임재욱;성형진
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.775-786
    • /
    • 1992
  • 본 연구에서는 DVM의 이론적 배경과 수치계산에 대해 자세히 다루었다. 음향 교란이 가졌을 때의 재부착에 대한 수치해석결과는 Kiya등의 실험결과와 비교하 였으며 만족할만한 일치를 보여주었다. 결과 및 고찰에서는 주로 음향교란이 있는 경우의 재부착길이를 최소화하는 주파수와 교란이 없는 유동의 난류구조해석을 평균속 도 및 압력과 그의 섭동치, 그리고 파워 스펙트럼과 상관계수등을 통해 자세히 비교검 토하였다.

국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석 (Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation)

  • 정용만;성형진
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

이산와법에 의한 원호형 Sea Anchor의 유동장 수치해석 (Numerical Analysis for Flowfield of a Circular Arc Type Sea Anchor by Discrete Vortex Method)

  • 노기덕;권병국;안희춘
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1041-1051
    • /
    • 1998
  • The fluid dynamic properties of a circular arc type sea anchor were calculated by a discrete vortex method. The flow for the surface of the sea anchor was represented by arranging bound vortices at adequate intervals. The simulations were performed by assuming that the separations occur at edges. With time, the drag coefficient was almost constant but the lift coefficient oscillated in a cycle by von Karman's vortex street. As the camber ratios increase, the drag coefficient and Strouhal number were almost constant but the oscillating amplitude of the lift coefficient increased largely.

진공청소기 원심홴의 유동과 소음원 해석 (An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan)

  • 전완호;유기완;이덕주;이승갑
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

전개판에 대한 수직해석 (Computational Fluid Analysis for the Otter Boards)

  • 고관서;권병국;노기덕
    • 수산해양기술연구
    • /
    • 제28권2호
    • /
    • pp.132-143
    • /
    • 1992
  • This paper presents a method in order to calculate the vortex distribution, the streak-line and the time-line around the flat and the cambered otter board in two dimensional flow using the discrete vortex method, and to calculate C sub(L) and C sub(D) of the otter boards varied with the passage of time by the numerical simulation using the Blasu's formula. The results obtained are summarized as follows: 1. Flow pattern around the otter boards calculated by the discrete vortex method was resembled closely that of the visualized photograph. 2. C sub(L) and C sub(D) calculated by the numerical simulation was very similar to the model test. 3. The circulation direction around the otter boards and the action direction of the shearing force can be recognized from the time-line around the otter boards. 4. Flow speed in the back side of the otter boards was faster than that in the front side, and the difference of the flow speed in both side of the cambered otter boards was about 1.3 times greater than that of the flat otter boards. 5. The clockwise vortex was generated in the trailing edge, and the counter-clockwise vortex was generated the leading edge of the otter boards. And they were shown the shape of Karman's vortex varied with the passage of time.

  • PDF