• Title/Summary/Keyword: discrete system

Search Result 2,479, Processing Time 0.022 seconds

병렬분산 환경에서의 DEVS형식론의 시뮬레이션

  • Seong, Yeong-Rak;Jung, Sung-Hun;Kon, Tag-Gon;Park, Kyu-Ho-
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.5-5
    • /
    • 1992
  • The DEVS(discrete event system specification) formalism describes a discrete event system in a hierarchical, modular form. DEVSIM++ is C++ based general purpose DEVS abstract simulator which can simulate systems to be modeled by the DEVS formalism in a sequential environment. We implement P-DEVSIM++ which is a parallel version of DEVSIM++. In P-DEVSIM++, the external and internal event of models can be processed in parallel. To process in parallel, we introduce a hierarchical distributed simulation technique and some optimistic distributed simulation techniques. But in our algorithm, the rollback of a model is localized itself in contrast to the Time Warp approach. To evaluate its performance, we simulate a single bus multiprocessor architecture system with an external common memory. Simulation result shows that significant speedup is made possible with our algorithm in a parallel environment.

  • PDF

Performance Comparison of OFDM Based on Fourier Transform and Wavelet OFDM Based on Wavelet Transform (웨이블릿 변환 기반의 Wavelet-OFDM 시스템과 푸리에 변환 기반의 OFDM 시스템의 성능 비교)

  • Lee, Jungu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Orthogonal frequency division multiplexing(OFDM) is a multicarrier modulation(MCM) system that enables high-speed communications using multiple carriers and has advantages of power and spectral efficiency. Therefore, this study aims to complement the existing shortcomings and to design an efficient MCM system. The proposed system uses the inverse discrete wavelet transform(IDWT) operation instead of the inverse fast Fourier transform(IFFT) operation. The bit error rate(BER), spectral efficiency, and peak-to-average power ratio(PAPR) performance were compared with the conventional OFDM system through the OFDM system design based on wavelet transform. Our results showed that the conventional OFDM and Wavelet-OFDM exhibited the same BER performance, and that the Wavelet-OFDM using the discrete Meyer wavelet had the same spectral efficiency as the conventional OFDM. In addition, all systems of Wavelet-OFDM based on various wavelets confirm a PAPR performance lower than that of conventional OFDM.

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.

Output Tracking Controller Design of Discrete-Time TS Fuzzy Systems (이산시간 TS 퍼지 시스템의 추종 제어기 설계)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this paper, an output tracking control technique of discrete-time Takagi-Sugeno (TS) fuzzy systems is developed. The TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the stabilization problem of a uncertain multiple linear system. A sufficient condition for asymptotic tracking is obtained in terms of linear matrix inequalities (LMI). A design example is illustrated to show the effectiveness of the proposed method.

  • PDF

A note on the discrete time B/G/1 gated queueing system with vacations

  • Noh, Seung-Jong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.49-56
    • /
    • 1993
  • We consider a B/G/1 queueing system with vacations, where the server closes the gate when it begins a vacation. In this system, customers arrive according to a Bernoulli process. The service time and the vacation time follow discrete distributions. We obtain the distribution of the number of customers at a random point in time, and in turn, the distribution of the residence time (queueing time + service time) for a customer. This system finds an application in the performance evaluation of the DQDB protocol which has been adopted as the standard protocol for IEEE 802.6 MAN.

  • PDF

BIFURCATIONS IN A DISCRETE NONLINEAR DIFFUSION EQUATION

  • Kim, Yong-In
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.689-700
    • /
    • 1998
  • We consider an infinite dimensional dynamical system what is called Lattice Dynamical System given by a discrete nonlinear diffusion equation. By assuming the nonlinearity to be a general nonlinear function with mild restrictions, we show that as the diffusion parameter changes the stationery state of the given system undergoes bifurcations from the zero state to a bounded invariant set or a 3- or 4-periodic state in the global phase space of the given system according to the values of the coefficients of the linear part of the given nonlinearity.

  • PDF

PERSISTENCE OF HOMOCLINIC ORBITS AFTER DISCRETIZATION OF A TWO DIMENSIONAL DEGENERATE DIFFERENTIAL SYSTEM

  • Mehidi, Noureddine;Mohdeb, Nadia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1503-1510
    • /
    • 2014
  • The aim of this work is to construct a general family of two dimensional differential systems which admits homoclinic solutions near a non-hyperbolic fixed point, such that a Jacobian matrix at this point is zero. We then discretize it by using Euler's method and look after the persistence of the homoclinic solutions in the obtained discrete system.

Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables (이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법)

  • 윤기찬;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

Robust Vibration Control of Smart Structures via Discrete-Time Fuzzy-Sliding Modes (이산시간 퍼지-슬라이딩모드를 이용한 스마트구조물의 강건진동제어)

  • Choi, Seung-Bok;Kim, Myoung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3560-3572
    • /
    • 1996
  • This paper presents a new discrete-time fuzzy-sliding mode controller for robust vibration control of a smart structure featuring a piezofilm actuator. A governong equation of motion for the smart beam structure is derived and discrete-time codel with mismatched uncertainties such as parameter variations is constructed ina state space. A discrete-time sliding mode control system consisting of an equivalent controller and a discontinuous controller is formulated. In the design of the equivalent part, so called an equivalent controller separation method is adopted to achieve vzster convergence to a sliding surface without extension of a sliding region, in which the system robustness maynot be guaranteed. On the other hand, the discontinuous part is constructed on the basis of both the sliding and the convergence conditions using a time-varying feedback gain. The sliding moide controller is then incorporated with a fuzzy technique to appropriately determine principal control parameters such as a discountinuous feedback gain. Experimental implementation on the forced and random vibraiton controls is undertaken in order to demonstrate superior control performance of the proposed controller.

Discrete Application of Wave Board Transfer Function in Time Domain (시간영성에서 조파판 전달함수의 이산적 적용)

  • 전인식;박우선;오영민
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.133-142
    • /
    • 1993
  • In a computer-controlling wave generating system. it is sometimes necessary to incorporate the discrete transfer operation of wave board into control circuit in order to control the system in a more delicate way. A numerical filter simulating the transfer operation of wave board in time domain is designed in the form of a discrete recursive filter. The filter was applied to some example board inputs f3r either regular or irregular wave conditions in order to evaluate the filter performance. The filter outputs were compared with the results of theoretical analysis or the discrete convolution method. showing their excellent agreements. The discrete realization of the filter presented hen is in fact of the bilinear transformation. It was shown that the transformation always avoids the aliasing errors, being surely applicable with a sufficient accuracy even for the band-unlimited transfer function of wave board.

  • PDF