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BIFURCATIONS IN A DISCRETE
NONLINEAR DIFFUSION EQUATION

Yong-IN KiMm

ABSTRACT. We consider an infinite dimensional dynamical system
what is called Lattice Dynamical System given by a discrete nonlin-
ear diffusion equation. By assuming the nonlinearity to be a general
nonlinear function with mild restrictions, we show that as the dif-
fusion parameter changes the stationery states of the given system
undergoes bifurcations from the zero state to a bounded invariant
set or a 3- or 4-periodic state in the global phase space of the given
system according to the values of the coefficient of the linear part of
the given nonlinearity.

1. Introduction

Over the past ten years, a new class of infinite dimensional dynamical
systems, so called Lattice Dynamical Systems (LDS), have been studied
by many researchers. These systems proved to be a very useful tool
for the investigation of behavior of physical systems with particle-like
localized unbounded media. They are also effectively used in computer
simulations of discretized partial differential equations (1,2, 3].

Now suppose that at each site j of a d-dimensional lattice Z¢, we have
a finite dimensional local dynamical system which is defined by some
map f; : M; — M, where M; is a local phase space at the site j. For
simplicity, we consider an infinite chain (d = 1) and M; = EPVj € Z,
where EP? is a p-dimensional Euclidean space with ordinary inner prod-
uct (+,-) and the norm |- | = /(:,-). Then we have an infinite dimen-
sional dynamical system with the phase space M = [] jezM; and a
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point u € M can be thought of as a biinfinite sequence u = {u;}, where
u; € Mj, j € Z. To make the linear space M (with componentwise
addition and scalar multiplication) to be a Hilbert space, we equip M
with the inner product defined by

where ¢ > 1 is some fixed number depending on the particular problem.

Define | - || = 4/(-,")q and Bq = {u € M|||ulq < co}. Then it can
be easily shown that B, is a Hilbert space [1].

DEFINITION 1. Define the evolution operator ® : B, — B, by

(1) (®u); = H({u;}*),

where {u;}® = {u;|]i — j| < 5,5 € Z,s > linteger} and H : (EP)?*!
— EP is a differentiable map of class C? such that

0°H
Buiauj

O0H
E)ui

(2)

—_ b

—_ )

for any collection {u;}® and some constant A.

Then it is easy to verify that under the condition (2), ®(B;) C B,
and ® is Lipschitz continuous with the constant L = C(2s + 1)2¢% [1].

DEFINITION 2. Given a state u(n) = {u;(n)}32_,, € By at the
moment n, we can obtain via (1) the next state u(n + 1), that is,

u(n+ 1) = ®(u(n)) or

) uj(n+1) = (2(u(n); = H({w; (M)})-

The dynamical system (®", Bg),cz+ is called a lattice dynamical system
(LDS).
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Bifurcations in a discrete nonlinear diffusion equation

DEFINITION 3. A state (or solution) u;(n) for (3) is spatially homo-
geneous if uj(n) = £(n) Vj € Z and is stationary if uj(n) = ¢; Vn € Z+.
If ®™u = u for some m € Z*, then u is time m-periodic and u;1x =
u;Vj € Z for some k € Z*, then u is space k-periodic. If u is both time
m-periodic and space k-periodic, then we shall briefly call such » an
(m, k)-periodic solution.

For instance, the spatially homogeneous stationary solutions are
(1, 1)-solutions.

DEFINITION 4. The translational group {§7},cz acts on By by
(4) (8%°u); = jtjo,
where S : B; — B, is a shift operator defined by
(Su)j = ujt

and S7 is the nth iteration of S. The dynamical system ({S7}, B,)jez
is called a translational dynamical system (TDS).

Obviously, the TDS {S7},cz is generated by the shift map S! = S.

2. Discrete diffusion equations with general nonlinearity

Consider a discrete version of one-dimensional nonlinear diffusion
equation of the form

(5) uj(n+1) = u;j(n)+ f(u;(n))+((1+e)uj—1(n) —2u;(n) +u;(n)),

where ¢ is a sufficiently small real parameter and it represents a sym-
metric or asymmetric diffusion coupling according to € = 0 or ¢ # 0
respectively, and f is a nonlinear function of class C*° in the form

f(u) =au+O(lul?), 0<a<4 for |[u/<R,R>1, and
If'(w)| <A, |f'(u)j<A Vu€eR and for some constant A.

(6)

In this paper, we will restrict our attention to stationary solutions of
(5) and investigate bifurcation phenomena of them as ¢ varies. Setting
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uj(n) = ¢;Vj € Z,n € Z*, (5) becomes a second order difference
equation

(7) F@W;)+ A -+e)j—1 — 24+ ¥4 =0.

and putting again

(8) T =Yj-1,Y; = ¥;
we obtain a 2D discrete dynamical system

Ti+1 = Yj

(9) Yir1 = 2y; — (L+ &)z — f(y;)

This system is generated by the Hénon-type map

(10) Fe:(z,y) — (¥,2y— (L + &)z~ f(y)

and, in fact, a TDS on the set of stationary states of (5).

Note that bounded orbits of (9) (---,(zj,¥5), (®j+1,¥j+1),---) are
bounded solutions of (7) ¥ = (- -+ ,%¥; = y;,¥j+1 = Yj+1, - ) Which are
in turn bounded stationary states 1 € By of (5). Now, we investigate
the bounded orbits of (9). Let

K = {(z,y) € R?||F{(z,y)| < c0Vj € Z}.
Define a map h: K — By by
(h(z,y)); = w20 Fl(z,y) Y(z,y) € K,j €2,

where 7y is a projection onto the y-axis in the (z,y)-plane. Then,
h: K — h(K) C B, is a homomorphism and ho F; = Soh, ie., Fe|k
and S|,(k) are topologically conjugate.
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3. Bifurcation analysis

Consider again the Hénon-type map (10)

Fe:(z,y) — (v,2y — (1+e)z - f(v)),

where f satisfies the conditions (6). Notice that (0,0) is a fixed point
of F:Ve € R and via (8) it corresponds to a spatially homogeneous
stationary state u;(n) = 0Vj € Z, n € Z% in (5). When € = 0, the
linear part DFp(0,0) of the map Fp at (0,0) has complex conjugate
eigenvalues Ao, \g with |Ag| = 1 and

(11) Yo=3[2-a)+ivalE—a).

Here we assume that 0 < @ < 4 and a # 1,2,3 so that A} # 1 for
n=1,234

When € # 0, let A, = DF_(0,0). Then A, has also complex conju-
gate eigenvalues A(g), A(g) with A(0) = A if |¢| is sufficiently small so
that || < a(4 — a)/4. Moreover, we note that |A(¢)| = /1 + ¢ and so
%lz\(s)HE:o = 3 > 0. In other words, the map F, satisfies the Hopf
condition at weak resonance.

Since F, is at least of class C? near (0,0), ). is at least of class C1
and we can write

(12) AE) = Xo(1 + Aie + O(g|?)).

Let
Ao = eiz"o°, A1 = Re)l; +1i276,, AMe) = ])\(e)lei2"‘9(5),

Then from (12), we can write

|A(e)| =1+ eReA; + O(|s|2),

(13) 8(c) = g + €01 + O(Je[?),

where Re); > 0 since d%l)\flle:o > 0. With slight abuse of notation,
let us write

(14) F.(z) = Acx + O(|z]?), where = (z1,z2) € R%.
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Note that the higher order term is in general form because of the arbi-
trariness of the nonlinearity f in (5). Since A, has complex conjugate
eigenvalues A(€), A(€) with A(e) = |A(€)|e??™®(®), it may be put in the
Jordan form by a linear transformation and henceforth we may assume
that (14) has been written in this form with

09 Ac=pel [0 s |

Now we may identify R2and C by setting z = x; + x5, and considering
z,Z as independent variables.

Then (14) can be rewritten in the following complex form, again
denated as F,

(16) FE(Z) = A(S)Z + R(Z, 2)6)’

where A(¢) satisfies (13) and R(z, z,¢) = O(|z|?).

Now, according to the theory of normal form in the case of weak
resonance (A} # 1,n = 1,2,3,4), [4], there exists a C* e-dependent
change of coordinates such that in the new coordinates F, has the
form, again denoted as F¢,

a7 F.(2) = Me)z + a(e) 2%z + B(e)z* + Rs(z, 2,€),

where Rs(z,2,€) = O(|2|%) and one can make B(g) = 0 if A§ # 1.

We first consider the case of weak resonance. Writing again F in po-
lar coordinates z = re*?™®, F.(z) = Re'?™® and after some calculations
we obtain
(18)

{ R=(1+ eRe)1)r — ar3 + Re(foroe"10)r + O(lefPr+le|r3 +r°),

B=¢ + O + by + wir? + O(le]2 + le|r? + %)  (mod 1),

where ap = a(0), Bo = 8(0) and & = —Re(agho), w1 = z=Im(aglo).
We assume that a # 0. When ¢ = 0, the first equation of (18) becomes

(19) R=r(1—ar?)+0O(r%)
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and by simple graphical analysis we know that the fixed point r = 0 is
asymptotically stable if @ > 0 and is unstable if a < 0. When ¢ # 0,
from (18), we have a fixed point r = 0 and invariant circles £ = -1%;1'24—
O(r3). When o > 0, the fixed point r = 0 is asymptotically stable for
¢ < 0 and becomes unstable for € > 0, when a stable attracting invariant
circle bifurcates from the origin » = 0. When a < 0, the fixed point
r = 0 is unstable for ¢ > 0 and becomes stable for ¢ < 0, when an
unstable (repelling) invariant circle bifurcates from r = 0.
Returning to the map (9) and our original equation (5), the fixed
point r» = 0 corresponds to the spatially homogeneous stationary state
; = 0Vj € Z and the invariant circle corresponds to the bounded
invariant set S = {¢ € By|||¢||,, < r} in By. Summarizing the above
analysis, we obtain the following results.

THEOREM 1. Suppose that the nonlinearity f of (5) is of class C*®
and satisfies the conditions (6) and assume that 0 < a < 4 and a #
1,2,3. Suppose also that the associated Hénon-type map (10) has been
put in a complex normal form

F.(2) = Me) + a(e) 22z + O(|z|%),

where A(e) = Xo(1 + Mg + O(lg]?)) and Ao = A(0). Assume that
a = —Re(aghg) # 0, where g = a(0). Then, when o > 0, the zero
stationary state u = 0 of (5) is asymptotically stable for ¢ < 0, and
becomes unstable for € > 0 and an attracting invariant bounded set in
B, of the form

ERG)\]_

1
2
=L+ oflel)

{v € Byl lullo <7}, 7=

bifurcates from the zero state u = 0.

When a < 0, the zero stationary u = 0 of (5) is unstable for € > 0,
and become stable for ¢ < 0 and a repelling invariant bounded set of
the above form bifurcates from the zero state u = 0.

Next, we consider the case of strong resonance. In this case, the
normal form of the associated Hénon-type map takes the form

(20) Fe(2) = Me)z + coz2(€) 2 + ca1(e) 2’2 + O(|2])
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when A2 = 1 and
(21) F.(2) = Ae)z + dgl(s)z22 + d03(5)23 + O(|2]°)

when A} = 1, respectively [4]. To examine the periodic orbits of F,(z),
write the equation F*(2) = z in the equivalent system

(22) Fe(zi) = ziy1, i=1,--- ,n~1, F(z,) = 1,

where {z;}; C C, is a n-cycle of F.. Rewriting (22) in the vector-
matrix form, we have

(23) Sz = F(x),

where = (1,22, -+ ,&,) € C*, Fe(x) = (Fe(z1), -+ , Fe(zn)) € C™,
and

01 0 0

0 0 1 0
S=1. . .

o A |

1 0 0 ... 0

and diagonalizing S by a linear change of coordinates y = Pz, (23) can
be written as

(24) B(y,e) = PF(P~'y) — Ay =0,

where
A= PSP~ = diag(1, %0, %o >s- .-, %" ), ®:C" xR — C™
Since the linear part L = Dy®(0,0) has the kernel which is a 1D

subspace of C", we can apply the Liapunov-Schmidt method [5] to
obtain a bifurcation function

(25) 9(Un,€) = (®(y,€),vn) =0,

where y = y,vn + 0(yn,€), vn = (0,---,0,1) € KerL, O(yn,e) €
(KerL)' and we know that 8(yn,e) = O(|¢| - [yn| + |yn|?) by implicit
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differentiation. Also letting z = -};yn, one can easily show that equation
(25) is equivalent to the equation

(26) 2oz = F.(2) = Me)z + R(z, z,¢€),

where R(z, Z, €) is in normal form and satisfies the relation R(Aoz, Ao20, €)
= AoR(z,%,€). Note that the solution 2 in (26) is not the fixed point z
in (22). The fixed point of F is 1 which is given by

n—1
@) o= = et Y 0l
i=1

n—1

. . _ i 2
— 24 n;o,(nz,e) =z4+ O(le] - |2 + |2?),

where (z,¢) is a solution of (26). Also note that if (z2,€) is a solution of
(26), then (Msz,e)(k = 0,1,--- ,n — 1) is also a solution of (26) which
gives n fixed points z;,zs,- - , T of (22), where

(28) k= A5 2+ O(le] - |2| + |2?).
Now our problem of finding fixed points of (22) has been reduced to
solving the equation (26), where F.(z) is in normal form.

Consider first the case A} = 1. The normal form of F.(z) in this case
is

F.(2) = Me)z + co2(€) 22 + ca1(€)2%2 + O(|2|Y).

Writing A(g) = Ao(1 + &A1 + O(J¢]?)), the equation (26) becomes
(29) ehiz + XoB2% + O(lel?|2] + [el|=® + |2°) = 0,

where 8 = cg2(0) and we assume that 8 # 0.
Letting z = re?™? in (29), we obtain r = 0 and

_ . 1
(30) g1 + hofe mi¢r 4 - gle,r,¢) =0,
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where g € C*, g(g, 7,0 + %) = g(e,r, @) = O(r(le] + r)z). Set

)
el =121+ e,
1
(31) ¢:¢0+¢17
L arg (_il\‘)lé) (mod 1), fore >0
b0 = c
\ ~lydayg (_A_flé)(mod 1), fore <o,

where €1 = €1(r), ¢1 = ¢1(r) are to be determined. Now applying the
implicit function theorem, we can easily show that €;(r) = O(r) and
¢1(r) = O(r). Hence we obtain the 3-cycle given by

2
71 = 2(r) + 3 3 Gi(B2(r),e(r) = 2(r) + O(),
(32) =1
Iy = )\oz('r) + O(’I‘2),

T3 = XOZ(T) + O(T‘z),

where Ao = €2™/3 and r depends on ¢ by (31).

Note that from (31), when € < 0, we have the 3-cycle with the
phase delayed by % and so the orientation is reversed from the case
when € > 0. Returning to the map (9) and LDS (5), we can state the
following theorem.

THEOREM 2. Suppose that the nonlinearity f of (5) satisfies the
conditions as in (6). Assume that a = 3 which implies A = 1. Suppose
also that the associated Hénon-type map (10) has been put in a complex
normal form

F.(2) = Me) + coa(€) 2% + 1222 + O(|2|%),

where 3 = cp2(0) is also assumed to be 3 # 0. Then, as € passes
through € = 0, the zero state u = 0 of the LDS (5) bifurcates to a
1-parameter family of 3-periodic orbits on both sides of € = 0, where
the 3-periodic orbit {¢;| ¥i+s = vi,1 € Z} is given by

Wi = Ay trsin2mé + O(r?), i =1,2,3
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with r and ¢ depends on ¢ by (31).

In the case of A} = 1, we follow the same procedure as above and
obtain the following results.

THEOREM 3. Suppose that the nonlinearity f of (5) satisfies the
conditions as in (6) and that a = 2 so that A} = 1. Suppose also that
the associated Hénon-type map (10) has been put in a complex normal
form

Fo(2) = Me)z + do1(€)2%Z + doa(e) 22 + O(|2]?),

where z = re2™% and we set a; = Aod21(0), a2 = A\odp3(0) and assume
that Im (f{l) < |2

1 1
orbits bifurcating from uw = 0). Then, as € passes through € = 0, the
zero state u = 0 of the LDS (5) bifurcates to a pair of one-parameter
families of 4-periodic orbits {wfl)}, {¢52)} on the same side of € > 0 if

lay| > |az| and Re (%) < 0 and on the same side of ¢ < 0 if |a1| > |a2]

(otherwise there does not exist any 4-periodic

and Re (%) > 0 and on the opposite side of ¢ = 0 if |a;| < a2
Furthermore, the 4-periodic orbits are given by

P = N-lrsin2ng®, i=1,2,3,4, j=1,2,
where r and ¢ depend on £ by the relation

el = 58”7"2 + 0", j=1,2
o = ¢((,j) +0(r?), j=1,2 and

2]z
O 0 EREVES W N B I Sy 2 =
€5 Re(/\1>+( 1) [)\1 {m()q)}jl , 7=1,2,
o) = ——Lar ——E(()j))\l o +0(r*) (mod 1) =1,2
o - 8w & a9 4 » I= 5
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