• Title/Summary/Keyword: discrete curve

Search Result 138, Processing Time 0.022 seconds

Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model (평균 모세관압과 네트워크 모델을 이용한 불포화토의 유효 열전도도 산정에 관한 연구)

  • Han, Eunseon;Lee, Chulho;Choi, Hyun-Jun;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.93-107
    • /
    • 2013
  • Thermal conduction of the particulate composites or granular materials can be widely used in porous materials and geotechnical engineering. And it has continued to develop "effective thermal conductivity" of medium by modeling energy relationship among particles in medium. This study focuses on the development of the effective thermal conductivity at the unsaturated conditions of soils using the modified network model approach assisted by synthetic 3D random packed systems (DEM method, Discrete Element Method) at the particle scale. To verify the network model, three kinds of glass beads and the Jumunjin sand are used to obtain experimental values at various unsaturated conditions. The PPE (Pressure Plate Extractor) test is then performed to obtain SWCC (Soil-Water Characteristic Curve) of soil samples. In the modified network model, SWCC is used to adjust the equivalent radius of thermal cylinder at contact area between particles. And cutoff range parameter to define the effective zone is also adjusted according to the SWCC at given conditions. From a series of laboratory tests and the proposed network model, the modified network model which adopts a SWCC shows a good agreement in modeling thermal conductivity of granular soils at given conditions. And an empirical correlation between the fraction of the mean radius (${\chi}$) and thermal conductivity at given saturated condition is provided, which can be used to expect thermal conductivity of the granular soils, to estimate thermal conductivity of granular soils.

Video Compression using Characteristics of Wavelet Coefficients (웨이브렛 계수의 특성을 이용한 비디오 영상 압축)

  • 문종현;방만원
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • This paper proposes a video compression algorithm using characteristics of wavelet coefficients. The proposed algorithm can provide lowed bit rate and faster running time while guaranteeing the reconstructed image qualify by the human virtual system. In this approach, each video sequence is decomposed into a pyramid structure of subimages with various resolution to use multiresolution capability of discrete wavelet transform. Then similarities between two neighboring frames are obtained from a low-frequency subband which Includes an important information of an image and motion informations are extracted from the similarity criteria. Four legion selection filters are designed according to the similarity criteria and compression processes are carried out by encoding the coefficients In preservation legions and replacement regions of high-frequency subbands. Region selection filters classify the high-frequency subbands Into preservation regions and replacement regions based on the similarity criteria and the coefficients In replacement regions are replaced by that of a reference frame or reduced to zero according to block-based similarities between a reference frame and successive frames. Encoding is carried out by quantizing and arithmetic encoding the wavelet coefficients in preservation regions and replacement regions separately. A reference frame is updated at the bottom point If the curve of similarity rates looks like concave pattern. Simulation results show that the proposed algorithm provides high compression ratio with proper Image quality. It also outperforms the previous Milton's algorithm in an Image quality, compression ratio and running time, leading to compression ratio less than 0.2bpp. PSNR of 32 dB and running tome of 10ms for a standard video image of size 352${\times}$240 pixels.

A Study on the Ubiquitous Wireless Tilt Sensors's Application for Measuring Vertical Deflection of Bridge (교량의 수직처짐 측정을 위한 유비쿼터스 무선경사센서 활용연구)

  • Jo, Byung Wan;Yoon, Kwang Won;Kim, Young Ji;Lee, Dong Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.116-124
    • /
    • 2011
  • In this study, a new method to estimate the bridge deflection is developed by using Wireless Tilt Sensor. Most of evaluations of structural integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structure, especially bridges. In the past, Because of the lack of appropriate methods to measure the deflection curve of bridges on site, the measurement of deflection had been done restrictly within just a few discrete points along the bridge. Also the measurement point could be limited to locations installed with displacement transducers. So, in this study, the deflection of the structure was measured by wireless tilt sensor instead of LVDT(Linear Variable Differential Transformer). Angle change of tilt sensor shows structural behavior by the change of the resistor values which is presented to voltage. Moreover, the maximum deflection was calculated by changing the deflection angle which was calculated as V(measured voltage) ${\times}$F(factor) to deflection. The experimental tests were carried out to verify the developed deflection estimation techniques. Because the base of tilt measuring is the gravity, uniform measurement is possible independent of a measuring point. Also, measuring values were showed very high accuracy.

A Regression-Based Estimation of Strain Distribution for Safety Monitoring of the Steel Girder Subjected to Uncertain Loads (불확실한 하중을 받는 강재 보 구조물 안전도 모니터링을 위한 변형률 분포의 회귀 분석적 추정)

  • Lee, Ji Hoon;Choi, Se Woon;Park, Hyo Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.10-20
    • /
    • 2013
  • To evaluate the safety of a beam structure, strains are measured as an indicator of structural states. However, unless strain sensors are installed exactly on where maximum or other representative strains occur, the techniques by which rational assessment through measured strains is accomplished are required. Thus, this study suggests a process to estimate strain distribution on the steel beam from discrete strains measured by sensors. In the presented technique, the targeted beam is regarded to be subjected to unknown loads so that applicability is enhanced. Final strain distribution is given as form of a function after regression analysis. To verify the performance of estimation, a bending test for steel beam on which distributed and concentrated loads simultaneously act is conducted. From the comparison between estimated and directly measured strains in the test, the curve of strain distribution and the strain at arbitrary location could be predicted within maximum relative error 3.32% and maximum absolute error of $2.32{\mu}{\varepsilon}$, respectively. Thus reliable and practical monitoring is expected to apply effectively for the steel beam structure.

Development of a 2 Dimensional Numerical Landscape Evolution Model on a Geological Time Scale (2차원 지질시간 규모 수치지형발달모형의 개발)

  • Byun, Jong-Min;Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.6
    • /
    • pp.673-692
    • /
    • 2011
  • Advances in computer technology have enabled us to develop and use numerical landscape evolution models (NLEMs) for exploring the dynamics of geomorphic system from a variety of viewpoints which previously could have not been taken. However, as of yet there have been no trials using or developing NLEMs in Korea. The purpose of this research is to develop a 2 dimensional NLEM on a geological time scale and evaluate its usefulness. The newly developed NLEM (ND-NLEM) treats bedrock weathering as one of the major geomorphic processes and attempts to simulate the thickness of soil. As such it is possible to model the weathering-limited as well as the transport-limited environment on hillslopes. Moreover the ND-NLEM includes not only slow and continuous mass transport like soil creep, but also rapid and discrete mass transport like landslides. Bedrock incision is simulated in the ND-NLEM where fluvial transport capacity is large enough to move all channel bed loads, such that ND-NLEM can model the detachment-limited environment. Furthermore the ND-NLEM adopts the D-infinity algorithm when routing flows in the model domain, so it reduces distortion due to the use of the steepest descent slope flow direction algorithm. In the experiments to evaluate the usefulness of the ND-NLEM, characteristics of the channel network observed from the model results were similar to those of the case study area for comparison, and the hypsometry curve log during the experiment showed rational evidence of landscape evolution. Therefore, the ND-NLEM is shown to be useful for simulating landscape evolution on a geological time scale.

Determination of flood-inducing rainfall and runoff for highly urbanized area based on high-resolution radar-gauge composite rainfall data and flooded area GIS Data

  • Anh, Dao Duc;Kim, Dongkyun;Kim, Soohyun;Park, Jeongha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.157-157
    • /
    • 2019
  • This study derived the Flood-Inducing-Rainfall (FIR) and the Flood-Inducing-Runoff (FIRO) from the radar-gage composite data to be used as the basis of the flood warning initiation for the urban area of Seoul. For this, we derived the rainfall depth-duration relationship for the 261 flood events at 239 watersheds during the years 2010 and 2011 based on the 10-minute 1km-1km radar-gauge composite rainfall field. The relationship was further refined by the discrete ranges of the proportion of the flooded area in the watershed (FP) and the coefficient variation of the rainfall time series (CV). Then, the slope of the straight line that contains all data points in the depth-duration relationship plot was determined as the FIR for the specified range of the FP and the CV. Similar methodology was applied to derive the FIRO, which used the runoff depths that were estimated using the NRCS Curve Number method. We found that FIR and FIRO vary at the range of 37mm/hr-63mm/hr and the range of 10mm/hr-42mm/hr, respectively. The large variability was well explained by the FP and the CV: As the FP increases, FIR and FIRO increased too, suggesting that the greater rainfall causes larger flooded area; as the rainfall CV increases, FIR and FIRO decreased, which suggests that the temporally concentrated rainfall requires less total of rainfall to cause the flood in the area. We verified our result against the 21 flood events that occurred for the period of 2012 through 2015 for the same study area. When the 5 percent of the flooded area was tolerated, the ratio of hit-and-miss of the warning system based on the rainfall was 44.2 percent and 9.5 percent, respectively. The ratio of hit-and-miss of the warning system based on the runoff was 67 percent and 4.7 percent, respectively. Lastly, we showed the importance of considering the radar-gauge composite rainfall data as well as rainfall and runoff temporal variability in flood warning system by comparing our results to the ones based on the gauge-only or radar-only rainfall data and to the one that does not account for the temporal variability.

  • PDF

Numerical analysis on the estimation of optimal disc cutter angle in transition cutter zone (전이 구간(트렌지션 커터존)의 최적 디스크커터 각도 산정에 관한 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In the design of a tunnel boring machine (TBM), the excavation efficiency of the equipment depends on the design of the cutter head, which is directly in contact with the ground. Especially, the allocation of disc cutter is crucial issue. Disc cutters can be divided into center cutter zone, inner cutter zone and transition cutter zone depending on where they are placed. Many studies have been conducted to identify optimal cutting conditions for face cutters. However, research to determine the optimal cutting conditions for the transition cutter has been relatively incomplete. In this study, to identify the optimal cutting conditions for the transition cutter, numerical analysis using discrete element method was performed, and the specific energy curve according to the angle between the transition cutters was drawn to find out the optimum cutting conditions. The results show that the angle between the transition cutters showing minimum specific energy in the transition cutter zone is 9°. Transition cutter zone was divided into three sections according to the slope angle of the transition cutter. It is also found that, the greater the slope angle of the transition cutter. This finding shows good agreement with the present design of transition cutter zone.

Radiomics Analysis of Gray-Scale Ultrasonographic Images of Papillary Thyroid Carcinoma > 1 cm: Potential Biomarker for the Prediction of Lymph Node Metastasis (Radiomics를 이용한 1 cm 이상의 갑상선 유두암의 초음파 영상 분석: 림프절 전이 예측을 위한 잠재적인 바이오마커)

  • Hyun Jung Chung;Kyunghwa Han;Eunjung Lee;Jung Hyun Yoon;Vivian Youngjean Park;Minah Lee;Eun Cho;Jin Young Kwak
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.185-196
    • /
    • 2023
  • Purpose This study aimed to investigate radiomics analysis of ultrasonographic images to develop a potential biomarker for predicting lymph node metastasis in papillary thyroid carcinoma (PTC) patients. Materials and Methods This study included 431 PTC patients from August 2013 to May 2014 and classified them into the training and validation sets. A total of 730 radiomics features, including texture matrices of gray-level co-occurrence matrix and gray-level run-length matrix and single-level discrete two-dimensional wavelet transform and other functions, were obtained. The least absolute shrinkage and selection operator method was used for selecting the most predictive features in the training data set. Results Lymph node metastasis was associated with the radiomics score (p < 0.001). It was also associated with other clinical variables such as young age (p = 0.007) and large tumor size (p = 0.007). The area under the receiver operating characteristic curve was 0.687 (95% confidence interval: 0.616-0.759) for the training set and 0.650 (95% confidence interval: 0.575-0.726) for the validation set. Conclusion This study showed the potential of ultrasonography-based radiomics to predict cervical lymph node metastasis in patients with PTC; thus, ultrasonography-based radiomics can act as a biomarker for PTC.