• Title/Summary/Keyword: discrete combined analysis

Search Result 61, Processing Time 0.02 seconds

Bearing fault detection through multiscale wavelet scalogram-based SPC

  • Jung, Uk;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.377-395
    • /
    • 2014
  • Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array (TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.

Clinical Analysis of Surgical Results for Discrete Subaortic Stenosis (분리 대동맥판막하 협착증 수술의 임상적 고찰)

  • Yu Song Hyeon;Lim Sang Hyun;Hong You Sun;Park Young Hwan;Chang Byung Chul;Kang Meyun Shick
    • Journal of Chest Surgery
    • /
    • v.38 no.8 s.253
    • /
    • pp.545-550
    • /
    • 2005
  • Background: Discrete subaortic stenosis is known to recur frequently even after surgical resection. We retrospectively reviewed the preoperative and postoperative changes in pressure gradient through left ventricular outflow tract, and the recurrence rate. Material and Method: Between September 1984 and December 2004, 34 patients underwent surgical treatment. Mean age of patients was $17.1\pm15.2$ years and 19 patients $(55.9\%)$ were male, 16 patients $(47.1\%)$ had previous operations and associated diseases were aortic regurgitation (11), coarctation of aorta (3), and others. Result: Immediate postoperative peak pressure gradient was significantly lower than preoperative peak pressure gradient (21.8 mmHg vs 75.8 mmHg, p<0.04). Peak pressure gradient measured after 50.3 months of follow up was 20.2 mmHg which was also significantly lower than that of preoperative value but not significantly different from that of immediate postoperative value. There was no surgical mortality but one patient developed cerebral infarction. Mean follow up duration was $69.8\pm54.6\;months$. During this period, 5 patients $(14.7\%)$ had reoperation, 3 $(8.8\%)$ of whom were due to recurred subaortic stenosis. We found no risk factors for recurrence and survival for free from reoperation was $76.4\%$. Conclusion: Excision of subaortic membrane combined with or without myectomy in discrete subaortic stenosis showed sufficient relief of left ventricular outflow tract obstruction with low mortality and morbidity, but careful long term follow up is necessary for recurrence, since it is not predictable.

Analysis and Recognition of Behavioral Response of Selected Insects in Toxic Chemicals for Water Quality Monitoring (수질 모니터링을 위한 유해 물질 유입에 따른 생물체의 행동 반응 분석 및 인식)

  • Kim, Cheol-Ki;Cha, Eui-Young
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.663-672
    • /
    • 2002
  • In this paper, Using an automatic tracking system, behavior of an aquatic insect, Chironomus sp. (Chironomidae), was observed in semi-natural conditions in response to sub-lethal treament of a carbamate insecticide, carbofuran. The fourth instar larvae were placed in an observation cage $(6cm\times{7cm}\times{2.5cm)}$ at temperature of $18^\circ{C}$ and the light condition of 10 time (light) : 14 time (dark). The tracking system was devised to detect the instant, partial movement of the insect body. Individual movement was traced after the treatment of carbofuran (0.1ppm) for four days 2days : before treatment, 2 days : after treatment). Along with the other irregular behaviors, "ventilation activity", appearing as a shape of "compressed zig-zag", was more frequently observed after the treatment of the insecticide. The activity of the test individuals was also generally depressed after the chemical treatment. In order to detect behavioral changes of the treated specimens, wavelet analysis was implemented to characterize different movement patterns. The extracted parameters based on Discrete Wavelet Transforms (DWT) were subsequently provided to artificial neural networks to be trained to represent different patterns of the movement tracks before and after treatments of the insecticide. This combined model of wavelets and artificial neural networks was able to point out the occurrence of characteristic movement patterns, and could be an alternative tool for automatically detecting presences of toxic chemicals for water quality monitoring. quality monitoring.

Review on Discontinuum-based Coupled Hydro-Mechanical Analyses for Modelling a Deep Geological Repository for High-Level Radioactive Waste (고준위방사성폐기물 심층처분장 모델링을 위한 불연속체 기반 수리-역학 복합거동 해석기법 현황 분석)

  • Kwon, Saeha;Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.309-332
    • /
    • 2021
  • Natural barrier systems surrounding the geological repository for the high-level radioactive waste should guarantee the hydraulic performance for preventing or delaying the leakage of radionuclide. In the case of the behavior of a crystalline rock, the hydraulic performance tends to be decided by the existence of discontinuities, so the coupled hydro-mechanical(HM) processes on the discontinuities should be characterized. The discontinuum modelling can describe the complicated behavior of discontinuities including creation, propagation, deformation and slip, so it is appropriate to model the behavior of a crystalline rock. This paper investigated the coupled HM processes in discontinuum modelling such as UDEC, 3DEC, PFC, DDA, FRACOD and TOUGH-UDEC. Block-based discontinuum methods tend to describe the HM processes based on the fluid flow through the discontinuities, and some methods are combined with another numerical tool specialized in hydraulic analysis. Particle-based discontinuum modelling describes the overall HM processes based on the fluid flow among the particles. The discontinuum methods that are currently available have limitations: exclusive simulations for two-dimension, low hydraulic simulation efficiency, fracture-dominated fluid flow and simplified hydraulic analysis, so it could be improper to the modelling the geological repository. Based on the concepts of various discontinuum modelling compiled in this paper, the advanced numerical tools for describing the accurate coupled HM processes of the deep geological repository should be developed.

Compensation Analysis of Cell Delay Variation for ATM Transmission in the TDMA Method (TDMA 방식에서 ATM 전송을 위한 셀 지연 변이의 보상 해석)

  • Kim, Jeong-Ho;Choe, Gyeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.295-304
    • /
    • 1996
  • Toprovide economical BISDN service, with which integration process of many types of media is possible, it is necessary to construct a system with ground network and satellite network combined. The method for this type of transmission using satellite is TDMA that can provide services to many users in various area. However, the most difficult task to connect TDMA which uses synchronous method to ATM which used asynchronous transfer mode is the deterioration n of ATM transmission quality such as cell delay variation. Therefore, it is necessary to develop delay variation compensation method which can confront to the ATM. Efficient ways to use satellite links under the conditions such that maximum efficiency of the delay variation is limited under the required value, and the burst characteristic of transmission cell does not increase are being researched for translation between in ATM and TDMA. This paper points out the problems when time stamp method, reviewd in ground network, is applied to the satellite links to compensate the delay variation .To solve the problem, discrete cell count method is introduced along with the calculation of transmission capacity and error rate.Also, from the observation of stab-ility of the system and verification of reliability even when singal error occurred in the cell transmission timing information, the proposed compensation method appeared to be excellent.

  • PDF