• Title/Summary/Keyword: discrete Green's function

Search Result 12, Processing Time 0.03 seconds

Analysis of Waveguid Filter Using Green′s Absorbing Layer in three Dimension TLM Method (3차원 TLM 법에서 그린 흡수층을 이용한 도파관 필터의 해석)

  • 김병수;전계석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.1001-1010
    • /
    • 2001
  • In TLM method, Discrete Green's function ABC have been used when improved the exactness of analyzing in wide frequency band. But this technology has a complicated process to apply absorbing boundary, which means it needs additional numerical analyzing process to obtain discrete Green's function data. so, In this paper, we propose new Green's absorbing layer for simple process to apply absorbing boundary. newly proposed Green's absorbing layer is produced by applying of loss operation, loading discrete Green's function with attenuation. A state of optimum absorbing would be obtained by relation between increasing rate of loss, attenuation constant and length of green's absorbing layer. and then Analysts of waveguide BPF is carried out using Green's absorbing layer within state of optimum absorbing, then this result is in corrective agreement with the result applying traditional discrete Green's function ABC.

  • PDF

EXPLICIT EXPRESSION OF THE KRAWTCHOUK POLYNOMIAL VIA A DISCRETE GREEN'S FUNCTION

  • Kim, Gil Chun;Lee, Yoonjin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.509-527
    • /
    • 2013
  • A Krawtchouk polynomial is introduced as the classical Mac-Williams identity, which can be expressed in weight-enumerator-free form of a linear code and its dual code over a Hamming scheme. In this paper we find a new explicit expression for the $p$-number and the $q$-number, which are more generalized notions of the Krawtchouk polynomial in the P-polynomial schemes by using an extended version of a discrete Green's function. As corollaries, we obtain a new expression of the Krawtchouk polynomial over the Hamming scheme and the Eberlein polynomial over the Johnson scheme. Furthermore, we find another version of the MacWilliams identity over a Hamming scheme.

Numerical Analysis of EM scattering by Underground Object for GPR application (지하물체 탐지를 위한 수치해석법 연구)

  • Kim, Sung-Hwan;Ahn, Chang-Hoi
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1506-1507
    • /
    • 2007
  • For GPR applications, accurate analysis of the scatterered field is necessary to identify the unknown target. Dyadic Green's Function of the multilayered medium is developed and applied to analyse of underground conduting object. We used method of moment(MOM) with dyadic Green's function, and Discrete Complex Image Method(DCIM).

  • PDF

A Study on Shallow Water Propagation Model with 2-layered Sediment (2개의 해저층으로 구성된 천해 음파전달에 관한 모델 연구)

  • 김영선;김성부
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.71-80
    • /
    • 2001
  • In order to consider the sediment layer's effect to total acoustic field, we composed a 3 layered fluid model of 2 sediment layers by adding an additional layer to the Pekeris model and found solutions by using Green's function, boundary conditions and Sommerfeld radiation condition. The modes were divided into discrete modes and virtual modes, and confirmed that the characteristic equation to find discrete modes was same as that of Tolstoy and Clay for normal modes. Also, we confirmed that under similar conditions the 3 layered model showed same results as that of Pekeris model. We believe this 3 layered model can be used to study the sediment's effect on the virtual mode of near field.

  • PDF

Nonlinear Localized Modes in Photonic Crystals

  • Park, Q-Han
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.96-99
    • /
    • 2002
  • We give a brief overview of nonlinear localized modes in photonic crystals. We explain how photonic crystals can potentially be important in making small scale active devices which operate in an all optical way. Two models to approach nonlinear photonic crystals, the coupled mode theory and the discrete lattice theory using a Green's function, are explained.

AN UPPER BOUND ON THE CHEEGER CONSTANT OF A DISTANCE-REGULAR GRAPH

  • Kim, Gil Chun;Lee, Yoonjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.507-519
    • /
    • 2017
  • We present an upper bound on the Cheeger constant of a distance-regular graph. Recently, the authors found an upper bound on the Cheeger constant of distance-regular graph under a certain restriction in their previous work. Our new bound in the current paper is much better than the previous bound, and it is a general bound with no restriction. We point out that our bound is explicitly computable by using the valencies and the intersection matrix of a distance-regular graph. As a major tool, we use the discrete Green's function, which is defined as the inverse of ${\beta}$-Laplacian for some positive real number ${\beta}$. We present some examples of distance-regular graphs, where we compute our upper bound on their Cheeger constants.

Numerical Experiments using Efficient FMM for the EM Scattering by Underground Object (지하물체 탐지를 위한 FMM 기반의 효율적인 수치 해석 연구)

  • Kim, Sung-Hwan;Ahn, Chang-Hoi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1790-1795
    • /
    • 2009
  • For GPR(Ground Penetrating Radar) applications, an accurate analysis of the scattered field is necessary to identify the unknown target. Dyadic Green's function of the multilayered medium is developed and applied to analysis of the underground conducting object. We used method of moment(MOM) with dyadic Green's function, and Discrete Complex Image Method(DCIM). To reduce the computational complexity, fast multipole method is introduced and we showed the accuracy of the method comparing with the conventional method of moment. For investigating the underground conducting target, several numerical experiments were accomplished using this method.

A new absorbing boundary condition for the FDTD simulation of waveguides (도파관 구조의 FDTD해석을 위한 새로운 흡수경계조건)

  • 박면주;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3227-3234
    • /
    • 1996
  • This paper proposes a new absorbing boundary condition(ABC) for the FDTD simulation of waveguide problems. It is based on the exact analytic expression for the time domain EM wave propatation in the waveguide. The ABC derived from the expression has a convolution form whose kernel (the discrete Green's function) has a simple, closed form formula. Also, it is applicable to the wide variety of waveguide types with conducting boundaries and complex cross-sectional shapes.

  • PDF