• 제목/요약/키워드: discontinuous regression

검색결과 17건 처리시간 0.074초

Comparison of Nonparametric Function Estimation Methods for Discontinuous Regression Functions

  • Park, Dong-Ryeon
    • 응용통계연구
    • /
    • 제23권6호
    • /
    • pp.1245-1253
    • /
    • 2010
  • There are two main approaches for estimating the discontinuous regression function nonparametrically. One is the direct approach, the other is the indirect approach. The major goal of the two approaches are different. The direct approach focuses on the overall good estimation of the regression function itself, whereas the indirect approach focuses on the good estimation of jump locations. Apparently, the two approaches are quite different in nature. Gijbels et al. (2007) argue that the comparison of two approaches does not make much sense and that it is even difficult to choose an appropriate criterion for comparisons. However, it is obvious that the indirect approach also has the regression curve estimate as the subsidiary result. Therefore it is necessary to verify the appropriateness of the indirect approach as the estimator of the discontinuous regression function itself. Park (2009a) compared the performance of two approaches through a simulation study. In this paper, we consider a more general case and draw some useful conclusions.

Comparison of Jump-Preserving Smoothing and Smoothing Based on Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.519-528
    • /
    • 2009
  • This paper deals with nonparametric estimation of discontinuous regression curve. Quite number of researches about this topic have been done. These researches are classified into two categories, the indirect approach and direct approach. The major goal of the indirect approach is to obtain good estimates of jump locations, whereas the major goal of the direct approach is to obtain overall good estimate of the regression curve. Thus it seems that two approaches are quite different in nature, so people say that the comparison of two approaches does not make much sense. Therefore, a thorough comparison of them is lacking. However, even though the main issue of the indirect approach is the estimation of jump locations, it is too obvious that we have an estimate of regression curve as the subsidiary result. The point is whether the subsidiary result of the indirect approach is as good as the main result of the direct approach. The performance of two approaches is compared through a simulation study and it turns out that the indirect approach is a very competitive tool for estimating discontinuous regression curve itself.

Nonparametric Estimation of Discontinuous Variance Function in Regression Model

  • 강기훈;허집
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 2002
  • We consider an estimation of discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of a change point and jump size in variance function and then construct an estimator of entire variance function. We examine the rates of convergence of these estimators and give results on their asymptotics. Numerical work reveals that the effectiveness of change point analysis in variance function estimation is quite significant.

  • PDF

잔차 수정을 이용한 불연속 분산함수의 비모수적 추정 (Nonparametric estimation of the discontinuous variance function using adjusted residuals)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.111-120
    • /
    • 2016
  • 대부분의 불연속 회귀함수의 커널추정량은 알고 있거나 추정된 불연속점을 기준으로 자료를 분리하여 각각을 독립적으로 회귀함수를 적합하고 있다. 회귀모형에서 분산함수가 불연속점을 가지고 있을 때에도 잔차제곱들을 이용하여 위와 같은 불연속 회귀함수의 커널추정법을 활용하고 있다. Kang 등 (2000)은 $M{\ddot{u}}ller$ (1992)의 불연속점과 점프크기 커널추정량을 이용하여 반응변수의 표본을 연속인 회귀함수로부터 표본인 것처럼 수정하여 불연속 회귀함수를 추정하였다. 본 연구에서는 불연속 분산함수를 추정하기 위하여 Kang 등 (2000)의 방법을 이용한다. Kang과 Huh (2006)의 분산함수의 불연속점과 점프크기 추정량으로 잔차제곱들을 수정하고, 수정된 잔차제곱들을 이용하여 불연속 분산함수 커널추정량을 제안할 것이다. 제안된 추정량의 적분제곱오차의 수렴속도를 보여주고 모의실험을 통하여 기존의 추정량과 제안된 추정량을 비교하고자 한다.

Estimation of Jump Points in Nonparametric Regression

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.899-908
    • /
    • 2008
  • If the regression function has jump points, nonparametric estimation method based on local smoothing is not statistically consistent. Therefore, when we estimate regression function, it is quite important to know whether it is reasonable to assume that regression function is continuous. If the regression function appears to have jump points, then we should estimate first the location of jump points. In this paper, we propose a procedure which can do both the testing hypothesis of discontinuity of regression function and the estimation of the number and the location of jump points simultaneously. The performance of the proposed method is evaluated through a simulation study. We also apply the procedure to real data sets as examples.

NONPARAMETRIC ESTIMATION OF THE VARIANCE FUNCTION WITH A CHANGE POINT

  • Kang Kee-Hoon;Huh Jib
    • Journal of the Korean Statistical Society
    • /
    • 제35권1호
    • /
    • pp.1-23
    • /
    • 2006
  • In this paper we consider an estimation of the discontinuous variance function in nonparametric heteroscedastic random design regression model. We first propose estimators of the change point in the variance function and then construct an estimator of the entire variance function. We examine the rates of convergence of these estimators and give results for their asymptotics. Numerical work reveals that using the proposed change point analysis in the variance function estimation is quite effective.

Bootstrap Bandwidth Selection Methods for Local Linear Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.579-590
    • /
    • 2012
  • Local linear jump detection in a discontinuous regression function involves the choice of the bandwidth and the performance of a local linear jump detector depends heavily on the choice of the bandwidth. However, little attention has been paid to this important issue. In this paper we propose two fully data adaptive bandwidth selection methods for a local linear jump detector. The performance of the proposed methods are investigated through a simulation study.

Bandwidth Selection for Local Smoothing Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제16권6호
    • /
    • pp.1047-1054
    • /
    • 2009
  • Local smoothing jump detection procedure is a popular method for detecting jump locations and the performance of the jump detector heavily depends on the choice of the bandwidth. However, little work has been done on this issue. In this paper, we propose the bootstrap bandwidth selection method which can be used for any kernel-based or local polynomial-based jump detector. The proposed bandwidth selection method is fully data-adaptive and its performance is evaluated through a simulation study and a real data example.

불연속 로그분산함수의 커널추정량들의 비교 연구 (Comparison study on kernel type estimators of discontinuous log-variance)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.87-95
    • /
    • 2014
  • 분산함수가 불연속인 경우 Kang과 Huh (2006)는 잔차제곱을 이용한 Nadaraya-Watson 추정량으로 분산함수를 추정하였다. 음의 실수 값도 가질 수 있는 로그분산함수를 추정 대상으로 하여, 오차제곱의 분포를 ${\chi}^2$-분포로 가정하고 국소선형적합을 이용한 불연속 로그분산함수의 추정이 Huh(2013)에 의해 연구되었다. Chen 등 (2009)은 연속인 로그분산함수를 로그잔차제곱을 이용한 국소선형적합으로 추정하였다. 본 연구는 Chen 등의 추정법을 이용하여 불연속인 로그분산함수의 추정량을 제시하였다. 기존의 제안된 불연속인 로그분산함수의 추정량들과 제안된 추정량을 모의실험을 통하여 비교연구하고자 한다. 한편, 로그분산함수가 연속이지만 그 미분된 함수가 불연속일 경우, Huh (2013)의 방법과 제안된 방법으로 적합된 국소선형의 기울기를 이용하여 불연속인 미분된 로그 분산함수의 추정량을 제시하고자 한다. 이들 추정량의 비교 연구 또한 모의실험을 통하여 제시하고자 한다.

Testing the Existence of a Discontinuity Point in the Variance Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.707-716
    • /
    • 2006
  • 분산함수는 회귀함수와 더불어 회귀모형의 연구에 매우 중요한 함수이며 이 함수가 불연속일 때의 연구는 Delgado and Hidalgo (2000)와 Perron (2001)은 시계열모형에서는 비모수적 추정법에 의해 분산함수의 추정을 연구하였으며 Kang and Huh (2006)은 Perron의 추정법을 회귀모형에 적용하여 분산함수의 불연속점의 추정에 대하여 연구하였고, Huh (2005)는 Kang and Huh의 잔차제곱들을 이용한 분산함수의 불연속점의 추정 대신 이차적률함수를 이용하여 분산함수의 불연속점을 추정하였다. 이는 Kang and Huh의 연구에서 잔차제곱들을 구하기 위하여 회귀함수의 추정이 우선되어야 하기에 전체적인 계산량이 늘어나게 되고, 늘어난 만큼 불연속점 추정의 정도가 떨어지게 됨으로 반응변수의 표본의 제곱을 이용하여 이차적률함수의 추정으로 불연속점을 추정하는 것이 더 용이하기 때문이다. 이러한 연구를 바탕으로 본 연구에서는 Huh의 점프의 크기 추정량의 점근분포를 이용하여 불연속점의 존재 유무에 대한 가설검정법을 제안하였다. 즉, 점프의 크기 추정량의 귀무가설 하의 점근분포가 가지고 있는 장애모수인 불연속점의 위치에서 확률밀도함수와 4차적률함수를 비모수적 방법으로 추정하는 방법을 제안하고 이들의 균일 일치성을 보여 가설검정법을 제안하였다. 불연속점의 추정에 앞서 불연속점의 존재 여부의 가설검정이 우선되어야 하기에 다른 통계적 함수에 대한 불연속점의 연구에서도 이러한 본 논문에서 연구한 방법으로 불연속점의 존재 유무에 대한 가설검정법을 제안 할 수 있을 것이다.

  • PDF