• Title/Summary/Keyword: discontinuous

Search Result 1,399, Processing Time 0.033 seconds

A Study on Discontinuum Analysis and Continuum Analysis of Tunnels in Jointed Rock Mass (절리발달 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Cho Sun-Kyu;Kim Si-Kyeok;Kim Do-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1089-1094
    • /
    • 2004
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two method : discontinuous model and continuum model. Generally, distinct element method (DEM) is applied in discontinuous model, and finite element method (FEM) or finite difference method (FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests is conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC is utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

  • PDF

Reduction of Common Mode Voltage in Asymmetrical Dual Inverter Configuration Using Discontinuous Modulating Signal Based PWM Technique

  • Reddy, M. Harsha Vardhan;Reddy, T. Bramhananda;Reddy, B. Ravindranath;Suryakalavathi, M.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1524-1532
    • /
    • 2015
  • Conventional space vector pulse width modulation based asymmetrical dual inverter configuration produces high common mode voltage (CMV) variations. This CMV causes the flow of common mode current, which adversely affects the motor bearings and electromagnetic interference of nearby electronic systems. In this study, a simple and generalized carrier based pulse width modulation (PWM) technique is proposed for dual inverter configuration. This simple approach generates various continuous and discontinuous modulating signals based PWM algorithms. With the application of the discontinuous modulating signal based PWM algorithm to the asymmetrical dual inverter configuration, the CMV can be reduced with a slightly improved quality of output voltage. The performance of the continuous and discontinuous modulating signals based PWM algorithms is explored through both theoretical and experimental studies. Results show that the discontinuous modulating signal based PWM algorithm efficiently reduces the CMV and switching losses.

A Study on Continous and Discontinous Analysis of Tunnels in Jointed Rock Mass (절리 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Lee Joung-Sun;Kim Si-Kyeok;Kim Do-Hoon;Jung Jae-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2005
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two methods : continuous and discontinuous model. Generally, distinct element method(DEM) is applied in discontinuous model, and finite element method(FDM) or finite difference method(FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests are conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC are utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

A Novel Scheme to Depth-averaged Model for Analyzing Shallow-water Flows over Discontinuous Topography (불연속 지형을 지나는 천수 흐름의 해석을 위한 수심적분 모형에 대한 새로운 기법)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1237-1246
    • /
    • 2015
  • A novel technique was proposed to calculate fluxes accurately by separation of flow area into a part of step face which is dominated by flow resistance of it and an upper part which is relatively less affected by the step face in analyzing shallow-water flows over discontinuous topography. This technique gives fairly good agreement with exact solutions, 3D simulations, and experimental results. It has been possible to directly analyze shallow-water flows over discontinuous topography by the technique developed in this study. It is expected to apply the developed technique to accurate evaluation of overflows over weirs or retaining walls (riverside roads) and areas flooded by the inundation in the city covered in discontinuous topography.

Periodic-Cell Simulations for the Microscopic Damage and Strength Properties of Discontinuous Carbon Fiber-Reinforced Plastic Composites

  • Nishikawa, M.;Okabe, T.;Takeda, N.
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.77-93
    • /
    • 2009
  • This paper investigated the damage transition mechanism between the fiber-breaking mode and the fiber-avoiding crack mode when the fiber-length is reduced in the unidirectional discontinuous carbon fiber-reinforced-plastics (CFRP) composites. The critical fiber-length for the transition is a key parameter for the manufacturing of flexible and high-strength CFRP composites with thermoset resin, because below this limit, we cannot take full advantage of the superior strength properties of fibers. For this discussion, we presented a numerical model for the microscopic damage and fracture of unidirectional discontinuous fiber-reinforced plastics. The model addressed the microscopic damage generated in these composites; the matrix crack with continuum damage mechanics model and the fiber breakage with the Weibull model for fiber strengths. With this numerical model, the damage transition behavior was discussed when the fiber length was varied. The comparison revealed that the length of discontinuous fibers in composites influences the formation and growth of the cluster of fiber-end damage, which causes the damage mode transition. Since the composite strength is significantly reduced below the critical fiber-length for the transition to fiber-avoiding crack mode, we should understand the damage mode transition appropriately with the analysis on the cluster growth of fiber-end damage.

A Study on the reduction of cogging force of stationary discontinuous armature Permanent Magnet Linear Synchronous Motor by change in Auxiliary pole (보조극 변화에 따른 전기자 분산배치 영구자석형 리니어 동기 모터의 코깅력 저감에 관한 연구)

  • Lee, Kyu-Myung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.613-619
    • /
    • 2010
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the outlet edge cogging force generated between the armature's core and the mover's permanent magnet. This paper contemplated the outlet cogging for ceaccording to 2-D numerical analysis by FEM. We installed the auxiliary pole for in order to minimize the outlet cogging force.

The Application of the Medified Distinct Element Method to Wave Propagation in Structures with Discontinuous Faces (수정개별요소법에 의한 불연속 구조체의 파전달 거동 해석)

  • 김문겸;오금호;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.232-239
    • /
    • 1997
  • The phenomenology of shock loading effects in brittle mass has been of interest to researchers and engineers. The shock loading as blasting causes strong stress waves in the structures. Discontinuous faces due to shock waves interrupt the tensile stress wave propagation and reflect the stress wave propagation. To predict the fracturing behavior of brittle mass, it is required for the numerical method that can analyze the colliding and slipping behavior of discontinuous faces and the wave propagation in the mass, simultaneously In this study, the wave propagation in the brittle materials is analyzed using the modified distinct element method to be able to predict the behavior of discontinuous structures. The behavior of an unsupported bar subjected to loading at the end is analyzed to verify the rigid body motion of a bar and the relative displacement in the bar. The colliding behavior of two bars is analyzed to investigate the propagation of stress waves in the bar. The fracturing behavior of a bar due to impact loading is analyzed to investigate the propagation of stress waves in the bar with and without the discontinuous faces. The applicability of the modified distinct element method to the wave propagation problems is investigated.

  • PDF

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

Numerical analysis of shallow-water flow over the square-edged broad-crested weir (직각 광정 위어를 지나는 천수 흐름의 수치 해석)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.811-821
    • /
    • 2022
  • Accuracy of a numerical model with the Hwang's scheme of directly analyzing discontinuous topography could be enhanced by introducing a flux correction coefficient that accounted for the deviation of actual pressure from hydrostatic distribution acting on the front of discontinuous topography. The optimal coefficient was determined from 218 experimental runs for square-edged broad-crested weir and simulation with it showed good agreement with another two square-edged broad-crested weir experiments and an unsteady side-weir experiment. This enabled accurate numerical simulation of shallow-water flow over the discontinuous river structure, such as square-edged broad-crested weir, without alleviating discontinuous topography with refined meshes or imposing internal boundary conditions.

Novel Unified Criterion to Optimize Power Coupling at Optical Directional Couplers with Discontinuity Interface (불연속 경계면을 갖는 광 방향성 결합기의 최적 결합효율을 위한 새로운 통합기준)

  • Ho, Kwang-Chun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • Novel unified criterion to optimize power coupling at optical directional couplers with discontinuous input/output interfaces is first defined and evaluated numerically. The numerical results reveal that maximum power transfer between guiding slabs without discontinuous interfaces is dominated by conventional phase-matching condition while the guiding structures with discontinuous interfaces has maximum power transfer at an equi-partition condition, which describes the power distribution condition between two rigorous modes propagating through optical couplers.

  • PDF