• Title/Summary/Keyword: discharging current

Search Result 266, Processing Time 0.025 seconds

Characterization of Surface at Ti Oxide Films Converted by Anodic Spark Discharge (양극산화 불꽃 방전에 의한 Ti 산화피막의 표면특성)

  • Song, Jae-Joo;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.545-546
    • /
    • 2006
  • This study was performed to investigate the surface properties of electrochemically oxidized pure titanium by anodic spark discharging method. Commercially pure titanium plates of $10{\times}20{\times}1[mm]$ in dimensions were polished sequentially emery paper. Anodizing was performed at current density of $76.2\;[mA/cm^2]$, application voltage of 290, 350, 400 [V] using a regulated DC power supply, which allowed automatic transition constant current when a preset maximum voltage has been reached. The Ti surface oxided films was characterized by scanning electron microscope(SEM). The precipitation of HA(Hydroxyapatite) crystals on anodized surface was greatly accelerated by hydrothermal treatment. The concentrations of DL-$\alpha$-Glycerolphosphate Magnesiurn(DL-$\alpha$-GP-Mg) salt and Ca acetate in an electrolyte was highly affected the precipitation of HA crystals converted by Ti Anodized oxide films by Shape of Impulse Voltage.

  • PDF

Characteistics of Charge Traps and Poling Behavior of Poly (Vinylidene Fluoride)

  • Seo Jeong Won;Ryoo Kun Sang;Lee Hoo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.218-221
    • /
    • 1985
  • Transient charging and discharging currents as well as space charge limited currents have been measured in biaxially stretched poly(vinylidene fluoride) film under various poling fields and temperatures. At low temperatures and short poling times, the I-V characteristics showed shallow trap behavior. When the current values extrapolated to the infinite time, the I-V characteristics indicate that the distribution of the trap energy levels is uniform or very broad. The abnormal suppression of current at higher poling voltages and the high discharge rate observed also in the same voltage range are attributed to the morphological changes due to dipole reorientation.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

New Control Method for the Current Ripple Reduction of 3-phase Interleaved Bidirectional DC-DC Converter (3상 인터리브드 양방향 DC-DC 컨버터의 전류리플을 저감하기 위한 새로운 제어기법)

  • Jung, Jae-Hun;Kim, Jihyun;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.260-266
    • /
    • 2016
  • A new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter is proposed. The converter used in this study operates in discontinuous mode to minimize the switching losses. All the switches are turned on at ZVS and ZCS conditions, and turned off at ZVS condition. The charging and discharging power of the battery is controlled by varying the switching frequency while maintaining the discontinuous mode operation. A 3 kW 20 kHz power converter is designed and implemented. Simulation and experimental results show the validity of the proposed method. The proposed control method can be used to reduce the battery ripple current significantly.

Cathode Side Engineering to Raise Holding Voltage of SCR in a 0.5-㎛ 24 V CDMOS Process

  • Wang, Yang;Jin, Xiangliang;Zhou, Acheng;Yang, Liu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.601-607
    • /
    • 2015
  • A set of novel silicon controlled rectifier (SCR) devices' characteristics have been analyzed and verified under the electrostatic discharge (ESD) stress. A ring-shaped diffusion was added to their anode or cathode in order to improve the holding voltage (Vh) of SCR structure by creating new current discharging path and decreasing the emitter injection efficiency (${\gamma}$) of parasitic Bipolar Junction Transistor (BJT). ESD current density distribution imitated by 2-dimensional (2D) TCAD simulation demonstrated that an additional current path exists in the proposed SCR. All the related devices were investigated and characterized based on transmission line pulse (TLP) test system in a standard $0.5-{\mu}m$ 24 V CDMOS process. The proposed SCR devices with ring-shaped anode (RASCR) and ring-shaped cathode (RCSCR) own higher Vh than that of Simple SCR (S_SCR). Especially, the Vh of RCSCR has been raised above 33 V. What's more, their holding current is kept over 800 mA, which makes it possible to design power clamp with SCR structure for on chip ESD protection and keep the protected chip away from latch-up risk.

Experiment of Single-phase Grid Connected Battery Charger (5kW급 계통연계형 단상 배터리 충전기의 구현 및 실험)

  • An, Hyun-Sung;Lee, Wujong;Mun, Byung-Ho;Park, Il-Kyu;Jung, Seon-Yong;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2013
  • This paper explains control methods of single-phase grid connected battery charger. Charging mode is control by Constant Current - Constant Voltage method and discharging mode is controlled by active-reactive power control method. Current control method is based on the synchronous reference frame(SRF) PI controller, and the second harmonic of battery current is compensated by an added L-C resonant circuit. Feasibility of the proposed control methods is verified through experiment with a prototype of 5kW single-phase grid connected battery charger.

Transient characteristics of current lead losses for the large scale high-temperature superconducting rotating machine

  • Le, T.D.;Kim, J.H.;Park, S.I.;Kim, D.J.;Lee, H.G.;Yoon, Y.S.;Jo, Y.S.;Yoon, K.Y.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.62-65
    • /
    • 2014
  • To minimize most heat loss of current lead for high-temperature superconducting (HTS) rotating machine, the choice of conductor properties and lead geometry - such as length, cross section, and cooling surface area - are one of the various significant factors must be selected. Therefore, an optimal lead for large scale of HTS rotating machine has presented before. Not let up with these trends, this paper continues to improve of diminishing heat loss for HTS part according to different model. It also determines the simplification conditions for an evaluation of the main flux flow loss and eddy current loss transient characteristics during charging and discharging period.

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

  • Feng, Bo;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1006-1017
    • /
    • 2015
  • This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.

A Study on High Performance Operation of Hybrid Energy Recovery Drive System for Piezoelectric Pump (피에조 펌프 구동용 에너지 회수형 하이브리드 구동장치 고성능 운전에 관한 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Cho, Yong-Ho;Kim, Ki-Seok;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1426-1431
    • /
    • 2015
  • Piezoelectric pump can be considered as R-C load and it needs something special driver because the output voltage does not become 0 even though the applied voltage is 0 with common converter. This operating system consists of fly-back converter to increase the input voltage and energy recovery inverter to apply square voltage to the piezoelectric pump. The energy recovery inverter can charge and discharge the energy of capacitive load. In this paper, to enhance performance of the driver, a few elements or circuits are added and modified. To drive the inverter safely, current limit resister is added and adjusted the value to valance the charging and discharging current. In addition, a current limit inductor is added to the input side to limit the input current and enhance the efficiency. Inductor only may make oscillation and another resister is added parallel to the inductor to solve this problem. The converter and inveter are assembled to one board for compactness. The appropriateness is proved with simulation and experiments.

A Fast-Switching Current-Pulse Driver for LED Backlight (LED 백라이트를 위한 고속 스위칭 전류-펄스 드라이버)

  • Yang, Byung-Do;Lee, Yong-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.39-46
    • /
    • 2009
  • A fast-switching current-pulse driver for light emitting diode (LED) backlight is proposed. It uses a regulated drain current mirror (RD-CM) [1] and a high-voltage NMOS transistor (HV-NMOS). It achieves the fast-response current-pulse switching by using a dynamic gain-boosting amplifier (DGB-AMP). The DGB-AMP does not discharge the large HV-NMOS gate capacitance of the RD-CM when the output current switch turns off. Therefore, it does not need to charge the HV-NMOS gate capacitance when the switch turns on. The proposed current-pulse driver achieves the fast current switching by removing the repetitive gate discharging and charging. Simulation results were verified with measurements performed on a fabricated chip using a 5V/40V 0.5um BCD process. It reduces the switching delay to 360ns from 700ns of the conventional current-pulse driver.