• Title/Summary/Keyword: discharge tube

Search Result 337, Processing Time 0.031 seconds

Fabrication and Property of Excimer Lamp Coated with Green-emitting Zn2SiO4:Mn2+ Phosphor Film (녹색발광 Zn2SiO4:Mn2+ 형광체가 코팅된 엑시머 램프의 제작 및 특성)

  • Kang, Busic;Jung, Hyunjee;Jeong, Yongseok;Son, Semo;Kim, Jongsu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.106-109
    • /
    • 2022
  • The green-emitting Zn2SiO4:Mn2+ phosphor film was evaluated in a xenon excimer lamp. The phosphor film with 2 ㎛ thick was formed of monolithic structure on the inner side of quartz through a long-time annealing process of coated ZnO solution doped with Mn2+ ion and SiO2 of quartz tube. The coated quartz was filled with 100 torr of xenon gas, and simultaneously both sides was melt and sealed. The xenon-field quartz tube was discharge by applying the voltage of 15 kV with a frequency of 26 kHz, and emitted the glow with dominant peak at 172 nm. The vacuum ultraviolet excited the inner-side coated Zn2SiO4:Mn2+ phosphor film, which emitted the pure and strong green light.

Study of the Characteristic and Optimization of Induction Lamp according to Gas Pressure and Amalgam Type (고출력 무전극램프의 가스압 및 아말감종류에 따른 특성분석 및 최적화에 관한 연구)

  • Chung, Young-Il;Jung, Dae-Chul;Kim, Yong-Kab;Park, Dae-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Currently, road lightings are installed with less than 400W of existing metal halide lamps. These road lightings are being replaced by energy-saving lightings. Induction lamps are expected to be more actively replaced with targets for tunnel lighting and high ceiling lighting. Therefore, it is necessary to develop high efficiency, high power induction lamps system. In this study, the gas type & pressure, amalgam type were designed for the high power of the induction lamps. And induction lamp system was optimized through electrical, optical characteristics analysis. It is optimized to the gas pressure 300~350 [mmHg] for the discharge tube of high power induction lamp and ferrite core. The driving circuit matching was completed with a induction lamp using indium amalgam. The rated power consumption of the induction lamp was optimized with 250 W (rated ${\pm}10%$)

Characteristics of Nano Particle Precipitation and Residual Ozone Decomposition for Two-Stage ESP with DBD (배리어 유전체 방전형 2단 전기집진기의 나노입자 집진 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Ji, Jun-Ho;Yoon, Ki-Young;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1678-1683
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Although DBD high electron density and energy, its potential use as nano and sub-micron sized particle charging are not well known. Aim of this work is to determine design and operating parameters of a two-stage ESP with DBD. DBD and ESP are used as particle charger and precipitator, respectively. We measured particle precipitation efficiency of two-stage ESP and estimated ozone decomposition of both pelletized $MnO_2$ catalyst and pelletized activated carbon. To examine the particle precipitation efficiency, nano and sub-micron sized particles were generated by a tube furnace and an atomizer. AC voltage of $7{\sim}10$ kV(rms) and 60 Hz is used as DBD plasma source. DC -8 kV is applied to the ESP for particle precipitation. The overall particle collection efficiency for the two-stage ESP with DBD is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized $MnO_2$ catalyst or pelletized activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

  • PDF

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Jang, Du-Hui;Park, Min;Kim, Seon-Ho;Jeong, Seung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

A Study of Ozone Generation Characteristic using Ceramic Catalyst Tube of Ti-Si-Al (Ti-Si-Al형 세라믹 촉매 방전관의 오존 발생 특성 연구)

  • 조국희;김영배;이동훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.130-136
    • /
    • 2002
  • A novel ozonizer has been developed using a high frequency surface discharge and a high purity Ti-Si-Al ceramic catalyst as its dielectric component. A cylindrical thin compound ceramic catalyst in reactor is adhered to inside of the film-like outside electrode. And, when experiment condition are oxygen gas temperature of 20 [$^{\circ}C$], inner reactor pressure of 1.6 atm 600[Hz] and flow late of 2[l/min]. the ozonizer can easily produce ozone concentration(50~60[g/㎥]for oxygen) and power efficiency(180[g/kWh]for oxygen) without using a special enrichment means. At 2[l/min], 20[$^{\circ}C$], 1.6[atm], 600[Hz]and 40[W], the result of simulation to gas temperature of reactor using general code Phoenics, the maximum temperature of reactor was 132[$^{\circ}C$]in reactor. Ant the result electric field simulation of Ti-Si-Al type reactor using general code Flux 2D, maximum electric field was 0.131E.08[V/m].

Characteristics of Electrical Properties, Ozone Generation and Decomposition of Volatile Organic Compounds by Nonthermal Plasma Reactor Packed with SBT Ferroelectric (SBT 강유전체 충전층 저온 플라즈마 반응기의 전기적 특성, 오존생성 및 휘발성유기화합물의 분해)

  • Eo, Joon;Kim, Il Won;Park, Jin Do;Lee, Joo Young;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.249-254
    • /
    • 2011
  • A nonthermal plasma reactor in conjunction with a tubular type with a ferroelectric (high-dielectric ceramic) pellet layer was designed and constructed. $SrBiTaO_9$ (SBT) pellets with 2.0 mm in diameter were held within the tube arrangement by two metal mesh electrodes (20 mm separation) connected to a high-voltage AC power supply. The dielectric constant of SBT pellets was 150 at room temperature and 500 at curie temperature ($335^{\circ}C$). The generation rate of ozone in the plasma reactor almost linearly increased with increasing applied voltage. In the case of the plasma reactor packed with SBT pellets the generation rate of ozone sharply increased at the applied voltage more than 20 kV. The ozone generation rate at the negative corona discharge was higher than that of the positive corona discharge. However, the destruction efficiency of toluene and methylene chloride was not increased in proportion to ozone concentration.

Mercury Quantity in a Fluorescent Lamp for a Backlight of LCD-TVs (LCD-백라이트용 형광램프의 수은량)

  • Bong, Jae-Hwan;Kim, Yun-Jung;Hwang, Ha-Chung;Jin, Dong-Jun;Jeong, Jong-Mun;Kim, Jung-Hyun;Koo, Je-Huan;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.495-500
    • /
    • 2008
  • The amount of vapor mercury for the generation of glow discharge plasma has been calculated in a fine tube fluorescent lamp having a mixed gas of Ne+Ar including a mercury. When the ionization of atom is considered by the collision between neutral atoms (Ne, Ar, Hg) and electrons of energy $kT_e{\sim}1\;eV$, the density of vapor mercury atom has been obtained as $n(Hg){\sim}3.43{\times}10^{22}m^{-3}$ for the plasma density $n_o{\sim}10^{17}m^{-3}$. In the fluorescent lamps of out diameter 4 mm used for $32{\sim}42$-inch LCD-TVs having a mixture gas of Ne(95%)+Ar(5%) with the pressure of 50 Torr, the quantity of vapor mercury for the glow discharge has been caculated as 0.02{\sim}0.08\;mg$.

The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 자이로 고전압 발생기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

Study on Reliability of Vapor Cell by Laser Packaging with Au/Au-Sn Heterojunction (Au/Au-Sn 이종접합 적용 레이저 패키징을 통한 Vapor Cell 신뢰성 연구)

  • Kwon, Jin Gu;Jeon, Yong Min;Kim, Ji Young;Lee, Eun Byeol;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.367-372
    • /
    • 2020
  • As packaging processes for atomic gyroscope vapor cells, the glass tube tip-off process, anodic bonding, and paste sealing have been widely studied. However, there are stability issues in the alkali metal which are caused by impurity elements and leakage during high-temperature processes. In this study, we investigated the applicability of a vapor cell low-temperature packaging process by depositing Au on a Pyrex cell in addition to forming an Au-Sn thin film on a cap to cover the cell, followed by laser irradiation of the Au/Au-Sn interface. The mechanism of the thin film bonding was evaluated by XRD, while the packaging reliability of an Ne gas-filled vapor cell was characterized by variation of plasma discharge behavior with time. Furthermore, we confirmed that the Rb alkaline metal inside the vapor cell showed no color change, indicating no oxidation occurred during the process.

A thermal stability testing and analysis for a surge protector installed in residential distribution board (주택용 분전반에 설치되는 서지보호기의 열적 안전성 시험 및 분석)

  • Kim, Ju-Chul;Park, Jang-Bum;Ki, Che-Ouk
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.339-341
    • /
    • 2009
  • Surge Protective Device(SPD) is installed by increasing information and communication equipments and home network equipments by individual home, and the amount of SPD used is increasing by revision industry regulations and strengthening equipotential grounding system. Parts of SPD installed in residential distribution board has ZnO varistor, voltage constraint type devices, but it is exposed to Temporary Overvoltage Characteristic. This thesis analyzes products through Thermal Stability test for SPD for general house and suggests the better method. As results of analysis, Gas Discharge Tube(GDT) to cut off from a leakage current and more than two kinds of safety devices to protect Thermal Runaway were needed.

  • PDF