• Title/Summary/Keyword: discharge suppression

Search Result 58, Processing Time 0.024 seconds

A Study on the Suppression of Abnormal Field Voltage in the Static Excitor Type Synchronous Generator (정지여자형 동기발전기의 계자이상전압 억제에 관한 연구)

  • 윤병도;이원교
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.2
    • /
    • pp.55-61
    • /
    • 1986
  • This paper describes the generation region and suppression effect of the abnormal field voltage induced when the synchronous generator is switched to the infinite bus, the critical value of negative field current is calculated by simmulation which has parameters of the phase difference and voltatge ratio between the bus and the generator. The suppression effect of discharge resistance connected in parallel with the field circuit is also investigated. According to this study, the optimal value of discharge resistance which can suppress effectively the abnormal field voltage may be calculated.

  • PDF

Dynamic D Flip-Flop for Robust and High Speed Operation (안정적인 고속동작을 위한 다이내믹 D Flip-Flop)

  • 송명수;허준호;김수원
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1055-1061
    • /
    • 2002
  • Conventional TSPC D flip-flop has the advantages of high speed, simple clock distribution, and no racing because of the single phase clocking strategy and its simple structure. But, it suffers from glitch, clock slope sensitivity and unbalanced propagation delay problems. Therefore, a new dynamic D flip-flop, which improves these disadvantages, is proposed. The main idea of this paper is DS(Discharge Suppression) scheme, which suppresses unnecessary discharge. As a result, the proposed structure is free from glitch problem and it improves maximum clock slope immunity from 0.25ns to Ins. Also, it uses only 8 transistors and it Is demonstrated that high speed operation is feasible by balancing propagation delay time.

Analysis of Flow and Thermal Mixing Responses on Hot Water Discharge by Quencher Devices into an Annular Water pool (원환풀내에서 Quencher Device에 의한 고온수 분출로 일어나는 혼합유동에 관한 연구)

  • Choi, Seong-Seok;Kim, Jong-Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • One of the problems with the Boiling Water Reactor involves the flow and thermal mixings in the suppression water pool high pressure steam discharge into the pool in case of emergency core relief. Varioos heat sensitive devices and pumps for the reactor core cooling are installed in the middle of the suppression pool. Especially the pumps utilize pool water in order to cool the reactor core in emergency cases. In this case, the water temperature for the reactor cool ins should be below a certain temperature specified by the reactor design. In the present investigation, in other to determine the optimum locations of these pumping devices, numerical solutions have been obtained for the model to determine the f low mixing characteristics. Experimental investigations have also been carried out for the flow mixing and for the thermal mixing in the pool during the discharge. Considering that the discharge steam through the Quenching Device becomes hot water immediately in the water pool, the steam- equivalent hot water has been utilized. Examining these characteristices, it becomes possible to deform me the best locations for RCIC, LPCI , HPCI pumps in the suppression water pool for the emermency reactor core cooling.

  • PDF

Speech signal processing in the auditory system (청각 계통에서의 음성신호처리)

  • 이재혁;심재성;백승화;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.680-683
    • /
    • 1987
  • The speech signal processing in the auditory system can be analysized based on two representations : Average discharge rate and Temporal discharge pattern. But the average discharge rate representation is restricted by the narrow dynamic range because of the rate saturation and the two tone suppression phenomena, and the temporal discharge pattern representation needs a sophisticate frequency analysis and synchrony measure. In this paper, a simple representation is proposed : using a model considering the interaction of Cochlear fluid-BM movement and a haircell model, the feature of speech signals (formant frequency and pitch of vowels) is easily estimated in the Average Synchronized Rate.

  • PDF

Response Time Index and Suppression Capability of Standard and Quick Response Sprinkler Head (표준형 및 속동형 스프링클러헤드의 반응시간지수와 소화성능)

  • 정길순;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.59-70
    • /
    • 1998
  • In this study, response time index(RTI) of standard and quick response type sprinkler head are measured and compared through ramp and plunge test in heated wind tunnel. Also discharge rate and water distribution, actual delivered density(ADD), fire test with wood cribs are performed to compare the fire suppression capability and the operation time and temperature between standard and quick response type sprinkler head.

  • PDF

Extinguishing Charactristics of Water Mist by Discharge Properties (방사특성 변화에 따른 미세물분무의 소화특성)

  • 이경덕;신창섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.41-48
    • /
    • 2001
  • Halogen-based fire suppressing agents have been the most effective fire suppressants and widely used for flammable liquid and electric fire. However they have environmental problems causing stratospheric ozone depletion and globe warming. As a substitution of halon, fire suppression system using fine water mist is one of an effective fire suppressant. Suffocating and cooling effects of water mist are increased by the evaporation characteristics because it has droplet size less than 1,000 $\mu{m}$ and very large surface area. In this study, the extinguishing characteristics of fire was measured with changing of water mist droplet size, flow density; discharge pressure, and fire size. As a result, the extinguishing time of pool fire was shortened with the increase of flow density and in case of low flow density less than 0.5$\pm$0.05 ml/$\textrm{cm}^2$ . min, the extinguishing time was shortened with the increase of droplet size. The cycling discharge was effective for $\eta$-heptane pool fire, and total amount of water mist required to extinguish fire was reduced to a quarter compare with continuous discharge.

  • PDF

The Study on Arc Suppression of Line-to-Line Electrodes in Air and Removal of the Metaloxide (선대 선 전극방식의 대기압 아크억제 대책 및 Metaloxide 제거에 관한 연구)

  • 정종한;김문환
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.264-267
    • /
    • 2004
  • Recently the pulsed power systems have been widely used in many fields such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power systems, ozone generators and power sources of the laser beam. In this paper, we studied various electrical characteristics for arc suppression of line-to-line electrodes in air and removal of the metaloxide using our pulsed power system. To obtain high efficiency of the pulsed power system, we repeatedly experimented and tested their characteristics. by adjusting electrode length of the load. As a result, when the value of the electrode length and pulse repetition rate were changed at the load, the value of the arc voltage changed at the electrode load. In conclusion, we controlled arc voltage of the load by ,changing electrode length and pulse repetition rate. Also. we stydied removal area of the metaloxide using area discharge according to pulse repetition rate.

COMPARISON OF THE FIRE SUPPRESSION PERFORMANCE OF HALON REPLACEMENT AGENTS

  • Kim, Andrew K.;Joseph Z. Su
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.542-549
    • /
    • 1997
  • HFC-227ea and HCFC Blend A were evaluated using full-scale fire tests to obtain information on their fire suppression performance, drop-in capability, thermal decomposition products and physical behaviour of the agent such as its flow characteristics in the piping system. Also, full-scale tests were conducted with Halon 1301 to provide a basis for comparison. Halon 1301, at concentrations of 5% to 7.5%, showed effective total-flooding fire- extinguishing performance for all test scenarios. HFC-227ea, at a design concentration of 7.6% or higher, and HCFC Blend A, at a design concentration of 12%, extinguished all fires in the test facility, however, these agents produced higher concentrations of acid gases than Halon 1301. The quantity of the acid gases generated during fire suppression was dependent on agent concentration, agent discharge time, fire type and size as well as extinguishment time.

  • PDF

Effects of Pressure and Temperature of Airflow on Performance of Nozzle-type Electrostatic Eliminator

  • CHOI Kwang-Seok;MOGAMI Tomofumi;SUZUKI Teruo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.228-232
    • /
    • 2005
  • The effects of the pressure and temperature of airflow were experimentally investigated to improve the performance of a nozzle-type electrostatic eliminator. The pressure ($A_P$) and the temperature ($A_T$) of the airflow toward the needle electrode were controlled in the ranges of 0 Mpa to 0.3 Mpa and of $25^{\circ}C$ to $125^{\circ}C$, respectively. It was confirmed that the ion-generation ability was increased depending on the magnitude of the $A_P$ and the $A_T$ of the airflow provided to the surrounding region of the needle electrode in the nozzle-type electrostatic eliminator. In addition, it was clear that the mixed effect of the $A_P$ and the $A_T$ of the airflow was large. These results were attributed mainly to (1) the activation of the corona discharge by the $A_T$, (2) the change of the decomposition and production of a suppression gas by the $A_T$, (3) the blow-off of the suppression gas near the needle electrode by the $A_P$, and (4) the change of the distribution of the current densities on the needle electrode by the $A_P$.