• Title/Summary/Keyword: discharge currents

Search Result 148, Processing Time 0.046 seconds

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.

Relationship between Exo-electron Emission Currents and Glow Discharge Delay of ACPDP

  • Hong, Cho-Rong;Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1053-1056
    • /
    • 2008
  • The effects of wall charge and bias voltage on exo-electron emission currents were examined. In addition, the effects of doping elements on the currents were investigated. These results indicated that the statistical delay is inversely proportional to the exo-electron emission currents measured.

  • PDF

Flow Actuation by DC Surface Discharge Plasma Actuator in Different Discharge Modes

  • Kim, Yeon-Sung;Shin, Jichul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2015
  • Aerodynamic flow control phenomena were investigated with a low-current DC surface discharge plasma actuator. The plasma actuator was found to operate in three different discharge modes with similar discharge currents of about 1 mA or less. Stable continuous DC discharge without audible noise was obtained at higher ballast resistances and lower discharge currents. However, even with continuous DC power input, a low-frequency self-pulsed discharge was obtained at lower ballast resistances, and a high-frequency self-pulsed discharge was obtained at higher set-point currents and higher ballast resistances, both with audible noise. The Schlieren image reveals that the low-frequency self-pulsed mode produces a synthetic jet-like flow implying that a gas heating effect plays a role, even though the discharge current is small. The high-frequency self-pulsed mode produces pulsed jets in a tangent direction, and the continuous DC mode produces a steady straight pressure wave. Particle image velocimetry (PIV) images reveal that the induced flow field by the low-frequency self-pulsed mode has flow propagating in the radial direction and centered between the electrodes. The high-frequency self-pulsed mode and continuous DC mode produce flow from the anode to the cathode. The perturbed region downstream of the cathode is larger in the high-frequency self-pulsed mode with similar maximum speeds.

A study on an earthing system without ground connection (대지에 매설할 필요가 없는 접지시스템에 관한 연구)

  • Seol, Dong-Hwa;Kim, Chang-Bong;Woo, Jea-Wook
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.258-261
    • /
    • 2009
  • This paper proposes an earthing system without ground connection. As a Green IT Environmental Solution, Internal-external surge and other unnecessary electric currents are converted into energy and through a discharge the signal is reduced. It's a structure that discharges through a neutral electric transformer. The results show that the electric potential rising of the earthing system proposed in this paper are approximately below the half and the discharge currents increased approximately 9 times when compared to existent earthing systems. This earthing system is economical, easy to install and can solve environmental contamination.

  • PDF

Hysteresis and Mode Transition in Electrodeless Fluorescent Lamp (무전극 램프에서의 히스테리시스와 모드 변환)

  • Lee, Joo-Ho;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.453-453
    • /
    • 2007
  • Electrodeless fluorescent lamp exhibit two modes of operation: a low density mode in which the power is capacitively coupled to the plasma and which is known as the E-mode, and a higher density mode which is an inductive discharge known as the H-mode. The transition between these two(E to H) mode exhibits hysteresis. It is observed that transition currents change at different frequencies and hysteresis exists not only between the starting and minimum maintaining currents of the electromagnetic mode (H mode) discharge but also between the starting and minimum maintaining currents of the electrostatic mode (E mode) discharge. Hysteresis effect can be important role in dimming system.

  • PDF

Hysteresis and Mode Transition in Electrodeless Lamp (무전극램프 에서의 Hysteresis와 모드 변환 특성)

  • Lee, Joo-Ho;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1560-1561
    • /
    • 2007
  • Electrodeless fluorescent lamp exhibit two modes of operation : a low density mode in which the power is capacitively coupled to the plasma and which is known as the E-mode, and a higher density mode which is an inductive discharge known as the H-mode. The transition between these two(E to H) mode exhibits hysteresis. It is observed that transition currents change at different frequencies and hysteresis exists not only between the starting and minimum maintaining currents of the electromagnetic mode (H mode) discharge but also between the starting and minimum maintaining currents of the electrostatic mode (E mode) discharge. Hysteresis effect can be important role in dimming system.

  • PDF

Investigation of Degradative Signals on Outdoor Solid Insulators Using Continuous Wavelet Transform

  • Uzunoglu, Cengiz Polat
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.683-689
    • /
    • 2016
  • Most outdoor solid insulators may suffer from surface degradations due to non-stationary currents that flow on the insulator surface. These currents may be classified as leakage, discharge and tracking currents due to their disturbing potencies respectively. The magnitude of these currents depends on the degree of the contamination of surface. The leakage signals are followed by discharge signals and tracking signals which are capable of forming carbonized tracking paths on the surface between high voltage and earth contacts (surface tracking). Surface tracking is one of the most breakdown mechanisms observed on the solid insulators, especially polymers which may cause severely reduced lifetime. In this study the degradations observed on polyester resin based insulators are investigated according to the IEC 587 Inclined Plane Test Standard. The signals are monitored and recorded during tests until surface tracking initiated. In order to prevent total breakdown of an insulator, early detection of tracking signals is vital. Continuous Wavelet Transform (CWT) is proposed for classification of signals and their energy levels observed on the surface. The application of CWT for processing and classification of the surface signals which are prone to display high frequency oscillations can facilitate real time monitoring of the system for diagnosis.

A Study on Properties of Charge & Discharge Current by Degrade in EPR (EPR의 열화에 의한 충.방전 전류 특성에 관한 연구)

  • Lee, Sung-Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.679-685
    • /
    • 2008
  • This paper describes the degraded properties of between the charge and discharge current for ${\gamma}$-ray irradiated in electric power cable rubbers using in nuclear power generating station. The charge and discharge current of degradation in EPR(Ethylene Propylene Rubber), which were irradiated with the radiant capacity of 0.033 Mrad/h, have been measured in order to investigate the influence of the atmosphere(in amount of reinforcing agent, moisture absorption and heat treatment) on electrical properties. When ${\gamma}$-ray were irradiated on the EPR with more reinforcing agent from 4 to 40 Phr, charge and discharge currents was increase due to the amount of reinforcing agent. It was verified that the discharging and charging currents irradiated by ${\gamma}$-ray were higher than those that was not irradiated. The amount of the degraded current was more after moisture absorption than before moisture absorption. The charge and discharge current after heat treatment was similar to that of before heat treatment and it was decreased with the time elapsed. As these properties related with ${\gamma}$-ray irradiation dose, it is suggested that these properties can be utilized as a index of irradiation degradation.

Response of estuary flow and sediment transport according to different estuarine dam locations and freshwater discharge intervals

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.519-519
    • /
    • 2023
  • Estuarine dams are a recent and global phenomenon. While estuarine dams can provide the benefit of improved freshwater resources, they can also alter estuarine processes. Due to the wide range of estuarine types and estuarine dam configurations, the effect of estuarine dams on estuaries is not well understood in general. To develop a systematic understanding of the effect of estuarine dam location and freshwater discharge interval on a range of estuarine types (strongly stratified, partially mixed, periodically stratified, and well-mixed), this study used a coupled hydrodynamic-sediment dynamic numerical model (COAWST) and compared flow, sediment transport, and morphological conditions in the pre- and post-dam estuaries. For each estuarine type, scenarios with dam locations at 20, 55 and 90 km from the mouth and discharge intervals of a discharge every 0.5, 3, and 7 days were investigated. The results were analyzed in terms of change in tide, river discharge, estuarine classification, and sediment flux mechanism. The estuarine dam location primarily affected the tide-dominated estuaries, and the resonance length was an important length scale affecting the tidal currents and Stokes return flow. When the location was less than the resonance length, the tidal currents and Stokes return flow were most reduced due to the loss of tidal prism, the dead-end channel, and the shift from mixed to standing tides. The discharge interval primarily affected the river-dominated estuaries, and the tidal cycle period was an important time scale. When the interval was greater than the tidal cycle period, notable seaward discharge pulses and freshwater fronts occurred. Dams located near the mouth with large discharge interval differed the most from their pre-dam condition based on the estuarine classification. Greater discharge intervals, associated with large discharge magnitudes, resulted in scour and seaward sediment flux in the river-dominated estuaries, and the dam located near the resonance length resulted in the greatest landward tidal pumping sediment flux and deposition in the tide-dominated estuaries.

  • PDF