• Title/Summary/Keyword: discharge coefficient

Search Result 680, Processing Time 0.024 seconds

The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient (송출공의 회전이 송출계수와 압력계수에 미치는 영향)

  • Ha, Kyoung-Pyo;Ku, Nam-Hee;Kauh, S.Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

Flow regime analysis method by using discharge Gini coefficient (유량 지니계수를 이용한 유황분석방안)

  • Park, Tae Sun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1223-1232
    • /
    • 2021
  • In this study, a new analysis method by using a "Discharge Gini Coefficient" is presented to determine the degree of inequality in daily discharge throughout the year. The Discharge Gini Coefficient can be calculated using the area relationship with the cumulative percentage of the daily mode discharge in the ascending order according to the cumulative percentage of the date of occurrence of the daily discharge throughout the year. The Discharge Gini Coefficient is presented as a value between 0 and 1, and the degree of inequality can be divided into 5 levels. The Discharge Gini Coefficient can be used to estimate the discharge stability of the downstream point relative to the upstream point. In addition, it is possible to quantify the influence of each reference discharge on the total inequality. The applicability of the Discharge Gini Coefficient was reviewed using long-term daily discharge data at eight points upstream and downstream of the four major rivers in Korea. The Discharge Gini Coefficient can also be used to analyze the discharge control effect in the downstream by the upstream dam.

Evaluation of Applicability for Nonpoint Discharge Coefficient using Watershed Model (유역모형을 이용한 비점배출계수 적용성 평가)

  • Lee, Eun Jeong;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.339-352
    • /
    • 2012
  • Total maximum daily load have been implemented and indicated that nonpoint discharge coeffients in flow duration curve were 0.50 of Normal flow duration ($Q_{185}$) and 0.15 of low flow duration($Q_{275}$). By using SWAT, nonpoint discharge coefficients are studied with the conditions of the instream flow and the rainfall in two study areas. The nonpoint discharge coefficient average of BOD and TP for normal flows duration in 3 years are 0.32~0.36 and 0.28~0.31. For the low flow duration, the nonpoint discharge coefficient avergae of BOD and TP were 0.10~0.12 and 0.10~0.11. These are lower than the coefficients of total maximum load regulation. There are big differences between one of regulation and one of SWAT for the normal flow duration. With the consideration of rainfall condition, the nonpoint discharge coefficient of flood flow duration are influenced on the amount of rainfalls. However, the nonpoint discharge coefficients of normal flow duration and low flow duration are not effected by the rainfall condition. Since the spatial distribution and geomorphological characteristics could be considered with SWAT, the estimation of nonpoint discharge coefficient in watershed model is better method than the use of the recommended number in the regulation.

A Computational Study for the Discharge Coefficient of a Film-Cooling Hole (Film-Cooling Hole의 유출계수에 관한 수치해석적 연구)

  • 김재형;김희동;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.15-22
    • /
    • 2003
  • Computational study using the 2-dimensional, compressible, Navier-Stokes equations is performed to predict the discharge coefficient of air flow through a film-cooling hole. In order to investigate the effect of internal/external flows on discharge coefficient, the present computational results which are obtained for three flow cases, only external flow, only internal flow, and no flow, are compared with experimental ones. It is found that the computational results predict the discharge coefficient of the film-cooling hole in a reasonable accuracy and the external crossflow reduces the discharge coefficient, while the internal crossflow increases the discharge coefficient in a range of momentum flux ratio $I_{c-jet}$ > 1 due to the total pressure loss and boundary layer effect.

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials

  • Yu, Seung-Ho;Park, Chang-Kyoo;Jang, Ho;Shin, Chee-Burm;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.852-856
    • /
    • 2011
  • The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.

Measurement of Pressure Coefficient in Rotating Discharge Hole by Telemetric Method (무선계측기법을 이용한 회전 송출공의 압력계수 측정)

  • Ku, Nam-Hee;Kauh, Sang-Ken;Ha, Kyoung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1248-1255
    • /
    • 2003
  • Pressure coefficient in a rotating discharge hole was measured to gain insight into the influence of rotation on the discharge characteristics of rotating discharge holes. Pressures inside the hole were measured by a telemetry system that had been developed by the authors. The telemetry system is characterized by the diversity of applicable sensor type. In the present study, the telemetry system was modified to measure static pressure using piezoresistive pressure sensors. The pressure sensor is affected by centrifugal force and change of orientation relative to the gravity. The orientation of sensor installation for minimum rotating effect and zero gravity effect was found out from the test. Pressure coefficients in a rotating discharge hole were measured in longitudinal direction as well as circumferential direction at various rotating speeds and three different pressure ratios. From the results, the behaviors of pressure coefficient that cannot be observed by a non-rotating setup were presented. It was also shown that the discharge characteristics of rotating discharge hole is much more influenced by the Rotation number irrespective of pressure ratio.

A Study of Discharge Coefficient for Thermal Buoyancy Natural Ventilation (온도차 자연환기 이론의 유량계수에 대한 연구)

  • Shin, Dongshin;Ko, Hyunjun;Kim, Sehyung;Seon, Jihyung;Yoon, Sangmin;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.639-644
    • /
    • 2015
  • This study reviews the discharge coefficient for thermal buoyancy natural ventilation through experimentation. We measure the air velocity at the outlet, which is needed to derive the discharge coefficient and to compare with the theoretical value. When a temperature difference exists between the inside and outside of the building, the measured discharge coefficient differs from the theoretical value with a maximum difference of 12%. The size and position of the openings have little effect on the discharge coefficient. For practical application, the theoretical discharge coefficient can be used with little modification.

The Effect of Distance between $90^{\circ}$Elbow close to Upstream Face of Orifice Plate and Orifice Plate on Discharge Coefficient (오리피스 전단에 인접한 $90^{\circ}$엘보와 오리피스간의 거리가 유출계수에 미치는 영향)

  • Yoon Joon-yong;Sung Nak-won
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.357-360
    • /
    • 2002
  • The effect of distance between ninety degree elbow close to upstream face of orifice plate and orifice plate on discharge coefficient was investigated. The distributions of discharge coefficient and differential pressure caused by elbow and short upstream straight length were examined and modified discharge coefficient was introduced. The results presented in this study could be useful when orifice plate is installed under the condition of simple flow disturbance element and short upstream straight length.

  • PDF

Study on the Estimation of Discharge Coefficient of Sluice for Tidal Power Generation by Performing Physical Experiment (수리실험에 의한 조력발전용 수문의 유량계수 산정에 관한 고찰)

  • Oh, Sang-Ho;Lee, Kwang Soo;Lee, Dal Soo;Jang, Se-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.160.1-160.1
    • /
    • 2011
  • In this study, the influence of methodology of assessing water levels on the discharge coefficient of sluice for tidal power generation was investigated. A physical experiment was performed in a planar open channel by installing 1/70 scale model of the sluice caisson in the planar open channel. In front of and behind the sluice model, sloping bathymetry was made to reproduce corresponding field condition. By analyzing the experimental results, it was found that the location of measuring water levels significantly affects the estimates of the discharge coefficient, due to the variability of the parameter according to the head difference between the measuring locations. Therefore, it is necessary to be careful in estimating and utilizing the discharge coefficient in the relevant study of a tidal power generation.

  • PDF