• Title/Summary/Keyword: disaster responses

Search Result 200, Processing Time 0.022 seconds

A Study on the Roles of Local Disaster Response Organizations (지역 재난현장 대응조직의 역할에 관한 연구)

  • Kwon, Gun-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • The purpose of this study is to compare and analyze the organizations for responses in disaster fields to cope with large-scaled disasters including Emergency Management Agency, Emergency Response Unit, Emergency Support Center, and Field Command Center (Field Command Office). According to the results of the analysis, the problems of the organizations for responses in local disaster fields are; 1) the scopes of roles among the organizations for responses in disaster fields are ambiguous, 2) the structures of the organizations for responses in disasters are different each other, 3) the integrated management functions among the organizations for responses in disasters are overlapped, and 4) the one who assumes the integrated command is not defined. In order to improve the problems, first, the range of working of each organization for responses in local disaster fields should be definitely established and an agreement in services among the organizations should be settled in advance. Second, similar designs in the structure among the organizations for responses in disasters are necessary for amicable communication. Third, the works for integration and management for each organization for responses should be apportioned. Fourth, the organization in charge and the one who assumes the integrated command for each type of disasters should be appointed in advance for rapid decision-making.

Flutter and buffeting responses of the Shantou Bay Bridge

  • Gu, M.;Chen, W.;Zhu, L.D.;Song, J.Z.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.505-518
    • /
    • 2001
  • Shantou Bay Bridge is the first long-span suspension bridge in China. Because of its location near the Shantou Seaport and its exposure to high typhoon winds, wind-resistant studies are necessary to be made. In this paper, critical flutter wind speeds and buffeting responses of this bridge at its operation and main construction stages are investigated. The Buffeting Response Spectrum method is first briefly presented. Then the sectional model test is carried out to directly obtain the critical flutter wind speed and to identify the flutter derivatives, which are adopted for the later analysis of the buffeting responses using the Buffeting Response Spectrum method. Finally the aeroelastic full bridge model is tested to further investigate the dynamic effects of the bridge. The results from the tests and the computations indicate that the flutter and buffeting behaviors of the Shantou Bay Bridge are satisfied.

Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges

  • Lu, Zheng;Chen, Xiaoyi;Li, Xiaowei;Li, Peizhen
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • An effective design approach for Multiple Tuned Mass Dampers (MTMDs) in pedestrian bridges was proposed by utilizing the transfer function to obtain each TMD's optimum stiffness and damping. A systematic simulation of pedestrian excitations was described. The motion equation of a typical MTMD system attached to a Multi-degree-of-freedom (MDOF) system was presented, and the transfer function from the input pedestrian excitations to the output acceleration responses was defined. By solving the minimum norm of the transfer function, the parameters of the MTMD which resulted in the minimum overall responses can be obtained. Two applications of lightly damped pedestrian bridges attached with MTMD showed that MTMDs designed through this method can significantly reduce the structural responses when subjected to pedestrian excitations, and the vibration control effects were better than the MTMD when it was considered as being composed of equal number and mass ratios of TMDs designed by classical Den Hartog method.

Development and Validation of Indirect Trauma Scale of Social Disaster (사회적 재난으로 인한 간접외상 척도의 개발과 타당화 연구)

  • Yeun-Joo Hur ;Min-Kyu Rhee
    • Korean Journal of Culture and Social Issue
    • /
    • v.23 no.3
    • /
    • pp.381-407
    • /
    • 2017
  • The purpose of this study was to develop scale for the measurement of indirect traumatization occurred by social disaster and test their validity. To achieve this purpose, this study conduct a research through the following procedure. First, to develop the inventory, various responses of indirect traumatization occurred by social disaster were gathered from Korean adults participated in open questionnaire. 41 items were made. Second, exploratory factor analysis were performed and 21 items were selected in this step. The Indirect Trauma Scale of Social Disaster(ITSSD) consisted of 4 factors, each with 4-to-8 items, respectively. Four factors include ① private coping responses ② symptom responses ③ distrust responses of world ④ moral emotion cause of social perpetrators. Appropriate levels of reliability were established for the ITSSD. Third, Indirect Trauma Scale of Social Disaster was validated by confirmatory factor analysis, and 21 items were fixed. To 300 participants differed from development step, confirmatory factor analysis was performed. 4 factors structure derived from the exploratory analysis was appropriate. And 4 factors indicated reasonable fit index such as TLI(.913), CFI (.924) and RMSEA(.077). In addition, ITSSD identified a significant positive correlation with Posttrauma Risk Checklist, Korean Depression Scale, State-Trait Anxiety Inventory-KYZ and negative with Acceptance-action Questionnaire-2. But that was unrelated to Forgiveness Trait Scale and Life Satisfaction Scale. Also the result showed that Women experienced high level of indirect trauma of social disaster than men.

Aeroelastic model test of a 610 m-high TV tower with complex shape and structure

  • Ding, Quanshun;Zhu, Ledong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.361-379
    • /
    • 2017
  • In view of the importance of the wind-structure interaction for tall and slender structures, an aeroelastic model test of the 610m-high TV tower with a complex and unique structural configuration and appearance carried out successfully. The assembled aeroelastic model of the TV tower with complex shape and structure was designed and made to ensure the similarities of the major natural frequencies and the corresponding mode shapes. The simulation of the atmospheric boundary layer with higher turbulent intensity is presented. Since the displacement and acceleration responses at several measurement sections were directly measured in the wind tunnel test, a multi-mode approach was presented to indirectly estimate the displacement and acceleration responses at arbitrary structural floors based on the measured ones. It can be seen that it is remarkable for the displacement and acceleration responses of the TV tower in the two horizontal directions under wind loads and is small for the dynamic response of the torsional displacement and acceleration.

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

Ground effects on wind-induced responses of a closed box girder

  • Mao, Wenhao;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.397-413
    • /
    • 2017
  • When bridges are constructed with lower heights from the ground, the formed channel between the deck and the ground will inevitably hinder or accelerate the air flow. This in turn will have an impact on the aerodynamic forces on the deck, which may result in unexpected wind-induced responses of bridges. This phenomenon can be referred to "ground effects." So far, no systematic studies into ground effects on the wind-induced responses of closed box girders have been performed. In this paper, wind tunnel tests have been adopted to study the ground effects on the aerodynamic force coefficients and the wind-induced responses of a closed box girder. In correlation with the heights from the ground in two ground roughness, the aerodynamic force coefficients, the Strouhal number ($S_t$), the vortex-induced vibration (VIV) lock-in phenomena over a range of wind velocities, the VIV maximum amplitudes, the system torsional damping ratio, the flutter derivatives, the critical flutter wind speeds and their variation laws correlated with the heights from the ground of a closed box girder have been presented through wind tunnel tests. The outcomes show that the ground effects make the vortex-induced phenomena occur in advance and adversely affect the flutter stability.

Effect of the limiting-device type on the dynamic responses of sliding isolation in a CRLSS

  • Cheng, Xuansheng;Jing, Wei;Li, Xinlei;Lu, Changde
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.133-144
    • /
    • 2018
  • To study the effectiveness of sliding isolation in a CRLSS (concrete rectangular liquid-storage structure) and develop a reasonable limiting-device method, dynamic responses of non-isolation, sliding isolation with spring limiting-devices and sliding isolation with steel bar limiting-devices are comparatively studied by shaking table test. The seismic response reduction advantage of sliding isolation for concrete liquid-storage structures is discussed, and the effect of the limiting-device type on system dynamic responses is analyzed. The results show that the dynamic responses of sliding isolation CRLSS with steel bar-limiting devices are significantly smaller than that of sliding isolation CRLSS with spring-limiting devices. The structure acceleration and liquid sloshing wave height are greatly influenced by spring-limiting devices. The acceleration of the structure in this case is close to or greater than that of a non-isolated structure. Liquid sloshing shows stronger nonlinear characteristics. On the other hand, sliding isolation with steel bar-limiting devices has a good control effect on the structural dynamic response and the liquid sloshing height simultaneously. Thus, a limiting device is an important factor affecting the seismic response reduction effect of sliding isolation. To take full advantage of sliding isolation in a concrete liquid-storage structure, a reasonable design of the limiting device is particularly important.

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells

  • ZHANG, Jun-Feng;LIU, Qing-Shuai;GE, Yao-Jun;ZHAO, Lin
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.541-555
    • /
    • 2019
  • Wind induced dynamic responses on hyperbolic cooling tower (HCT) shells are complicated functions of structure and wind properties, such as the fundamental frequency fmin, damping ratio ζ, wind velocity V, correlationship in meridian direction and so on, but comprehensions on the sensitivities of the dynamic responses to these four factors are still limited and disagree from each other. Following the dynamic calculation in time domain, features of dynamic effects were elaborated, focusing on the background and resonant components σB and σR, and their contributions to the total rms value σT. The σR is always less than σB when only the maximum σT along latitude is concerned and the contribution of σR to σT varies with responses and locations, but the σR couldn't be neglected for structural design. Then, parameters of the above four factors were artificially adjusted respectively and their influences on the gust responses were illustrated. The relationships of σR and the former three factors were expressed by fitted equations which shows certain differences from the existing equations. Moreover, a new strategy for wind tunnel tests aiming at surface pressures and the following dynamic calculations, which demands less experiment equipment, was proposed according to the influence from meridian correlationship.