• Title/Summary/Keyword: disaster issue detection

Search Result 11, Processing Time 0.029 seconds

The Detection Model of Disaster Issues based on the Risk Degree of Social Media Contents (소셜미디어 위험도기반 재난이슈 탐지모델)

  • Choi, Seon Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.121-128
    • /
    • 2016
  • Social Media transformed the mass media based information traffic, and it has become a key resource for finding value in enterprises and public institutions. Particularly, in regards to disaster management, the necessity for public participation policy development through the use of social media is emphasized. National Disaster Management Research Institute developed the Social Big Board, which is a system that monitors social Big Data in real time for purposes of implementing social media disaster management. Social Big Board collects a daily average of 36 million tweets in Korean in real time and automatically filters disaster safety related tweets. The filtered tweets are then automatically categorized into 71 disaster safety types. This real time tweet monitoring system provides various information and insights based on the tweets, such as disaster issues, tweet frequency by region, original tweets, etc. The purpose of using this system is to take advantage of the potential benefits of social media in relations to disaster management. It is a first step towards disaster management that communicates with the people that allows us to hear the voice of the people concerning disaster issues and also understand their emotions at the same time. In this paper, Korean language text mining based Social Big Board will be briefly introduced, and disaster issue detection model, which is key algorithms, will be described. Disaster issues are divided into two categories: potential issues, which refers to abnormal signs prior to disaster events, and occurrence issues, which is a notification of disaster events. The detection models of these two categories are defined and the performance of the models are compared and evaluated.

Disaster Prediction, Monitoring, and Response Using Remote Sensing and GIS (원격탐사와 GIS를 이용한 재난 예측, 감시 및 대응)

  • Kim, Junwoo;Kim, Duk-jin;Sohn, Hong-Gyoo;Choi, Jinmu;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.661-667
    • /
    • 2022
  • As remote sensing and GIS have been considered to be essential technologies for disasters information production, researches on developing methods for analyzing spatial data, and developing new technologies for such purposes, have been actively conducted. Especially, it is assumed that the use of remote sensing and GIS for disaster management will continue to develop thanks to the launch of recent satellite constellations, the use of various remote sensing platforms, the improvement of acquired data processing and storage capacity, and the advancement of artificial intelligence technology. This spatial issue presents 10 research papers regarding ship detection, building information extraction, ocean environment monitoring, flood monitoring, forest fire detection, and decision making using remote sensing and GIS technologies, which can be applied at the disaster prediction, monitoring and response stages. It is anticipated that the papers published in this special issue could be a valuable reference for developing technologies for disaster management and academic advancement of related fields.

A Study on the Monitoring Criteria of Disaster Signs for Early-warning System based on Multiple Hazardous Gas Sensor (복합 유해 가스 센서 기반의 조기 경보 시스템을 위한 재난 전조 감시 기준에 관한 연구)

  • Han, Kyusang;Park, Sosoon;Yoon, En Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.28-35
    • /
    • 2013
  • The number of large and complex buildings is growing and they are usually concentrated in metropolitan cities. There is a possibility in such buildings that a small accident can expand to a massive disaster since their scale and complexity. To deal with this issue, a research on gas sensors which can detect multiple gases and early-warning systems has been conducted. Proper criteria or standards are necessary for effective application and operation of such sensor-based disaster monitoring system. In this study, we have proposed the alarm criteria of concentration of hazardous gases for the detection and the alarm release. For each alarm level, systematic disaster response plans consist of responsive actions and information delivery have been prepared. These disaster monitoring criteria can help the detection of hazardous gas-related disaster in the early stage of accident and the provision of appropriate emergency responses.

Application and Analysis of Remote Sensing Data for Disaster Management in Korea - Focused on Managing Drought of Reservoir Based on Remote Sensing - (국가 재난 관리를 위한 원격탐사 자료 분석 및 활용 - 원격탐사기반 저수지 가뭄 관리를 중심으로 -)

  • Kim, Seongsam;Lee, Junwoo;Koo, Seul;Kim, Yongmin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1749-1760
    • /
    • 2022
  • In modern society, human and social damages caused by natural disasters and frequent disaster accidents have been increased year by year. Prompt access to dangerous disaster sites that are inaccessible or inaccessible using state-of-the-art Earth observation equipment such as satellites, drones, and survey robots, and timely collection and analysis of meaningful disaster information. It can play an important role in protecting people's property and life throughout the entire disaster management cycle, such as responding to disaster sites and establishing mid-to long-term recovery plans. This special issue introduces the National Disaster Management Research Institute (NDMI)'s disaster management technology that utilizes various Earth observation platforms, such as mobile survey vehicles equipped with close-range disaster site survey sensors, drones, and survey robots, as well as satellite technology, which is a tool of remote earth observation. Major research achievements include detection of damage from water disasters using Google Earth Engine, mid- and long-term time series observation, detection of reservoir water bodies using Sentinel-1 Synthetic Aperture Radar (SAR) images and artificial intelligence, analysis of resident movement patterns in case of forest fire disasters, and data analysis of disaster safety research. Efficient integrated management and utilization plan research results are summarized. In addition, research results on scientific investigation activities on the causes of disasters using drones and survey robots during the investigation of inaccessible and dangerous disaster sites were described.

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.

Remote Sensing-assisted Disaster Monitoring and Risk Analysis (원격탐사를 활용한 연속적 재난상황 인지 및 위험 모니터링 기술)

  • Im, Jungho;Sohn, Hong-Gyoo;Kim, Duk-jin;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1007-1011
    • /
    • 2020
  • Recently, natural and anthropogenic disasters have rapidly increased due to the on-going climate change and various human activities. Remote sensing (RS) technology enables the continuous monitoring and rapid detection of disastrous events thanks to its advantages covering vast areas at high temporal resolution. Moreover, RS technology has been very actively used in disaster monitoring and assessment since cluster- and micro-satellites and drones were introduced and became popular. In this special issue, nine papers were introduced, including the processing and applications of remote sensing data for monitoring, assessment, and prediction of various natural disasters. These papers are expected to serve as useful references for disaster management in the future.

A Collecting Model of Public Opinion on Social Disaster in Twitter: A Case Study in 'Humidifier Disinfectant' (사회적 재난에 대한 트위터 여론 수렴 모델: '가습기 살균제' 사건을 중심으로)

  • Park, JunHyeong;Ryu, Pum-Mo;Oh, Hyo-Jung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.177-184
    • /
    • 2017
  • The abstract should concisely state what was done, how it was done, principal results, and their significance. It should be less than 300 words for all forms of publication. Recently social disasters have been occurring frequently in the increasing complicated social structure, and the scale of damage has also become larger. Accordingly, there is a need for a way to prevent further damage by rapidly responding to social disasters. Twitter is attracting attention as a countermeasure against disasters because of immediacy and expandability. Especially, collecting public opinion on Twitter can be used as a useful tool to prevent disasters by quickly responding. This study proposes a collecting method of Twitter public opinion through keyword analysis, issue topic tweet detection, and time trend analysis. Furthermore we also show the feasibility by selecting the case of humidifier disinfectant which is a social issue recently.

Deep learning-based post-disaster building inspection with channel-wise attention and semi-supervised learning

  • Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Abhishek Subedi;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.365-381
    • /
    • 2023
  • The existing vision-based techniques for inspection and condition assessment of civil infrastructure are mostly manual and consequently time-consuming, expensive, subjective, and risky. As a viable alternative, researchers in the past resorted to deep learning-based autonomous damage detection algorithms for expedited post-disaster reconnaissance of structures. Although a number of automatic damage detection algorithms have been proposed, the scarcity of labeled training data remains a major concern. To address this issue, this study proposed a semi-supervised learning (SSL) framework based on consistency regularization and cross-supervision. Image data from post-earthquake reconnaissance, that contains cracks, spalling, and exposed rebars are used to evaluate the proposed solution. Experiments are carried out under different data partition protocols, and it is shown that the proposed SSL method can make use of unlabeled images to enhance the segmentation performance when limited amount of ground truth labels are provided. This study also proposes DeepLab-AASPP and modified versions of U-Net++ based on channel-wise attention mechanism to better segment the components and damage areas from images of reinforced concrete buildings. The channel-wise attention mechanism can effectively improve the performance of the network by dynamically scaling the feature maps so that the networks can focus on more informative feature maps in the concatenation layer. The proposed DeepLab-AASPP achieves the best performance on component segmentation and damage state segmentation tasks with mIoU scores of 0.9850 and 0.7032, respectively. For crack, spalling, and rebar segmentation tasks, modified U-Net++ obtains the best performance with Igou scores (excluding the background pixels) of 0.5449, 0.9375, and 0.5018, respectively. The proposed architectures win the second place in IC-SHM2021 competition in all five tasks of Project 2.

Forest Management Research using Optical Sensors and Remote Sensing Technologies (광학센서를 활용한 산림분야 원격탐사 활용기술)

  • Kim, Eun-sook;Won, Myoungsoo;Kim, Kyoungmin;Park, Joowon;Lee, Jung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1031-1035
    • /
    • 2019
  • Nowadays, the utilization infrastructure of domestic satellite information is expanding rapidly. Especially, the development of agriculture and forestry satellite is expected to drastically change the utilization of satellite information in the forest sector. The launch of the satellite is expected in 2023. Therefore, NIFoS and academic experts in forest sectors have prepared "Special Issue on Forest Management Research using Optical Sensors and Remote Sensing Technologies" in order to understand new remote sensing technologies and suggest the future direction of forest research and decision-making. This special issue is focused on a variety of fields in forest remote sensing research, including forest resources survey, forest disaster detection, and forest ecosystem monitoring. The new research topics for remote sensing technologies in forest sector focuses on three points: development of new indicators and information for accurate detection of forest conditions and changes, the use of new information sources such as UAV and new satellites, and techniques for improving accuracy through the use of artificial intelligence techniques.

KOMPSAT Image Processing and Analysis (다목적실용위성 영상처리 및 분석)

  • Kwang-Jae Lee;Kwan-Young Oh;Sung-Ho Chae;Sun-Gu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1671-1678
    • /
    • 2023
  • The Korea multi-purpose satellite (KOMPSAT) series consisting of multi-sensors has been used in various fields such as land, environmental monitoring, and disaster analysis since its first launch in 1999. Recently, as various information processing technologies (high-speed computing technology, computer vision, artificial intelligence, etc.) that are rapidly developing are utilized in the field of remote sensing, it has become possible to develop more various satellite image processing and analysis algorithms. In this special issue, we would like to introduce recently researched technologies related to the KOMPSAT image application and research topics participated in the 2023 Satellite Information Application Contest.