• Title/Summary/Keyword: directional wave spectrum

Search Result 55, Processing Time 0.022 seconds

Directional Wave Spectrum Equations Considering Asymmetry (비대칭성을 고려한 방향 스펙트럼식)

  • Jung, Jae-Sang;Kang, Kyu-Yung;Lee, Chang-Hoon;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1950-1953
    • /
    • 2006
  • 본 연구에서는 파랑의 방향에 따른 비대칭성을 고려한 방향 스펙트럼 식을 새로 제안하였다. 심해에서 생성된 다방향 불규칙 파랑이 등수심선에 대해 일정한 각도를 가지고 입사하는 경우, 각 방향의 파랑 성분의 굴절각의 차이에 의해 입사각에 대한 비대칭성이 발생하였다. 파랑의 굴절에 대해서는 Snell의 법칙을 이용하고 천수를 고려하여 해석적으로 계산하였으며, 이 결과와 새로 제안된 방향스펙트럼 식을 이용한 결과를 서로 비교하였다. 그 결과 비대칭성이 강한 천해역에서는 기존의 스펙트럼식에 비해 3배 이상 정확한 값을 재현하였다.

  • PDF

A modification of the rip current warning system utilizing real-time observations: a database function of likelihood distributions (실시간 관측정보를 이용한 이안류 경보체계 개선 연구: 발생정도 DB함수의 활용)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.843-854
    • /
    • 2022
  • For the rip current warning system to reduce rip-current accidents, the implementation method producing the risk index was modified. To produce fast response from the warning system based on real-time observations, the method employed the numerical results (i.e., rip current likelihoods according to the possible scenario) obtained in advance. In this study, instead of using the empirical curve-fitting functions of the previous method, the present modification utilized two-dimensional distributions (i.e., wave height and period, wave height and tidal elevation, wave height and direction, wave height and spreading of frequency-directional spectrum) of rip current likelihoods stacked in a database of the system. The wave and tidal observations in 2021 at the Haeundae coast were applied to the modified system, and its performances at several real events recorded in CCTV images were presented.

Study of Rip Current Warning Index Function according to Real-time Observations at Haeundae Beach in 2012 (2012년 해운대 해수욕장의 실시간 관측정보에 따른 이안류 경보지수 함수 연구)

  • Choi, Junwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1191-1201
    • /
    • 2014
  • The rip current warning index function, which estimates the likelihood of dangerous rip current in the real-time rip current warning system operating to help mitigate against rip current accidents at Haeundae beach, was studied. The rip current warning index evaluated as a function of various real-time observations was developed based on Choi et al. (2013b). This study shows a version of rip current warning index improved by including the effect of wave direction and spreadings of frequency-directional spectrum on rip current likelihood. The wave and tidal observations in 2012 at Haeundae coast were applied to the rip current index function, and its performances at several real events found based on CCTV images were presented and analyzed.

Multi-Objective Onboard Measurement from the Viewpoint of Safety and Efficiency (안전성 및 효율성 관점에서의 다목적 실선 실험)

  • Sang-Won Lee;Kenji Sasa;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.116-118
    • /
    • 2023
  • In recent years, the need for economical and sustainable ship routing has emerged due to the enforced regulations on environmental issues. Despite the development of weather forecasting technology, maritime accidents by rough waves have continued to occur due to incorrect weather forecasts. In this study, onboard measurements are conducted to observe the acutal situation on merchant ships in operation encountering rough waves. The types of measured data include information related to navigation (Ship's position, speed, bearing, rudder angle) and engine (engine revolutions, power, shaft thrust, fuel consumption), weather conditions (wind, waves), and ship motions (roll, pitch, and yaw). These ship experiments was conducted to 28,000 DWT bulk carrier, 63,000 DWT bulk carrier, 20,000 TEU container ship, and 12,000 TEU container ship. The actual ship experiment of each ship is intended to acquire various types of data and utilize them for multi-objective studies related to ship operation. Additionally, in order to confirm the sea conditions, the directional wave spectrum was reproduced using a wave simulation model. Through data collection from ship experiments and wave simulations, various studies could be proceeding such as the measurement for accurate wave information by marine radar and analysis for cargo collapse accidents. In addition, it is expected to be utilized in various themes from the perspective of safety and efficiency in ship operation.

  • PDF

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF