DOI QR코드

DOI QR Code

A modification of the rip current warning system utilizing real-time observations: a database function of likelihood distributions

실시간 관측정보를 이용한 이안류 경보체계 개선 연구: 발생정도 DB함수의 활용

  • Choi, Junwoo (Coastal Research Laboratory, Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering & Building Technology)
  • 최준우 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2022.09.08
  • Accepted : 2022.10.03
  • Published : 2022.10.31

Abstract

For the rip current warning system to reduce rip-current accidents, the implementation method producing the risk index was modified. To produce fast response from the warning system based on real-time observations, the method employed the numerical results (i.e., rip current likelihoods according to the possible scenario) obtained in advance. In this study, instead of using the empirical curve-fitting functions of the previous method, the present modification utilized two-dimensional distributions (i.e., wave height and period, wave height and tidal elevation, wave height and direction, wave height and spreading of frequency-directional spectrum) of rip current likelihoods stacked in a database of the system. The wave and tidal observations in 2021 at the Haeundae coast were applied to the modified system, and its performances at several real events recorded in CCTV images were presented.

이안류 안전사고 저감을 목적으로 운영되는 실시간 이안류 경보체계에서 위험지수를 생산하는 방법을 개선하는 연구를 수행하였다. 상기 체계는 실시간 관측정보를 기반으로 신속한 이안류 위험지수를 생산할 필요가 있기 때문에 사전 수치모의 결과(즉, 발생가능 시나리오에 따른 이안류 발생정도)를 이용한다. 본 연구에서는 기존 기법의 곡선적합 경험식을 사용하는 대신에, 다변수 함수인 이안류 발생정도를 2차원 분포(예, 파고-주기, 파고-조위, 파고-파향, 파고-주파수 스펙트럼 광협도, 파고-파향 스펙트럼 광협도)로 저장하여 사용하므로 이안류 위험지수 생산 기법을 개선하였다. 2021년에 운영된 해운대 파랑 관측자료와 부산조위소의 조위정보를 개선된 방법에 적용하였고, CCTV를 통해 확인된 몇 차례의 이안류 발생사건에 대하여 관측정보와 적용한 결과를 비교하여 제시하였다.

Keywords

Acknowledgement

본 연구는 해양수산부 국립해양조사원의 "실시간 이안류 감시체계 확대 및 서비스" 사업의 지원으로 수행되었습니다.

References

  1. Castelle, B., Scott, T., Brander, R.W., and McCarroll, R.J. (2016). "Rip current types, circulation and hazard." Earth-Science Reviews, Vol. 163, pp. 1-21. https://doi.org/10.1016/j.earscirev.2016.09.008
  2. Choi, J. (2014). "Study of rip current warning index function according to real-time observations at Haeundae Beach in 2012." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 4, pp. 1191-1201. https://doi.org/10.12652/KSCE.2014.34.4.1191
  3. Choi, J. (2015). "Numerical simulations of rip currents under phase-resolved directional random wave conditions." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 27, No. 4, pp. 238-245. https://doi.org/10.9765/KSCOE.2015.27.4.238
  4. Choi, J. (2022). "A numerical study on rip currents at the Haeundae coast changed after the beach nourishment." Journal of Korea Water Resources Association, Vol. 55, No. 9, pp. 669-678. https://doi.org/10.3741/JKWRA.2022.55.9.669
  5. Choi, J., Kirby, J.T., and Yoon, S. B. (2015). "Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions." Coastal Engineering, Vol. 101, pp. 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  6. Choi, J., Lee, H.J., Lee, Y.S., and Lim, C.H. (2012a). "A study of rip-current real-time warning system construction for Haeundae Beach." Korean Journal of Hydrography, Vo.l. 1, No. 1, pp. 47-55.
  7. Choi, J., Lim, C.H., and Yoon, S.B. (2013a). "Study of rip current warning index function varied according to real-time observations." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 477-490. https://doi.org/10.3741/JKWRA.2013.46.5.477
  8. Choi, J., Park, W.K., Bae, J.S., and Yoon, S.B. (2012b). "Numerical study on a dominant mechanism of rip current at Haeundae beach: Honeycomb pattern of waves." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5B, pp. 321-320. https://doi.org/10.12652/KSCE.2012.32.5B.321
  9. Choi, J., and Roh, M. (2021). "A laboratory experiment of rip currents between the ends of breaking wave crests." Coastal Engineering, Vol. 164, 103812. https://doi.org/10.1016/j.coastaleng.2020.103812
  10. Choi, J., Shin, C.H., Yoon, S.B. (2013b). "Numerical study on sea state parameters affecting rip current at Haeundae beach: Wave period, height, direction and tidal elevation." Journal of Korea Water Resources Association, Vol. 46, No. 2, pp. 205-218. https://doi.org/10.3741/JKWRA.2013.46.2.205
  11. Clark, D.B., Elgar, S., and Raubenheimer, B. (2012). "Vorticity generation by short-crested wave breaking." Geophysical Research Letters, Vol. 39, L24604. doi: 10.1029/2012GL054034.
  12. Dalrymple, R.A. (1975). "A mechanism for rip current generation on an open coast." Journal of Geophysical Research, Vol. 80, pp. 3485-3487. https://doi.org/10.1029/JC080i024p03485
  13. Dalrymple, R.A. (1978). "Rip currents and their causes." 16th International Conference of Coastal Engineering, Hamburg, pp. 1414-1427.
  14. Dalrymple, R.A., MacMahan, J.H., Reniers, A.J.H.M., and Nelko, V. (2011). "Rip currents." Annual Review of Fluid Mechanics, Vol.43, pp. 551-581. https://doi.org/10.1146/annurev-fluid-122109-160733
  15. Dusek, G., and Seim, H. (2013). "A probabilistic rip current forecast model." Journal of Coastal Research, Vol. 29, No. 4, pp. 909-925. https://doi.org/10.2112/JCOASTRES-D-12-00118.1
  16. Engle, J. (2003). Formulation of a rip current forecasting technique through statistical analysis of rip current-related rescues. Master's Thesis, University of Florida, FL, U.S.
  17. Feddersen, F. (2014). "The generation of surfzone eddies in a strong alongshore current." Journal of Physical Oceanography, Vol. 44, pp. 600-617. https://doi.org/10.1175/JPO-D-13-051.1
  18. Gensini, V.A., and Ashley, W.S. (2010). "An examination of rip current fatalities in the United States." Natural Hazards, Vol. 54, No. 1, pp. 159-175. https://doi.org/10.1007/s11069-009-9458-0
  19. Goda, Y. (2010). Random seas and design of maritime structures. 3rd Ed., Advanced Series on Ocean Engineering, Vol. 33, World Scientific Publishing Co. Pte. Ltd., Singapore.
  20. Johnson, D., and Pattiaratchi, C. (2006). "Boussinesq modelling of transient rip currents." Coastal Engineering, Vol. 53, pp. 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  21. Korea Hydrographic and Oceanographic Agency (KHOA) (2018). Report for operation of rip current warning system in 2018.
  22. Korea Hydrographic and Oceanographic Agency (KHOA) (2021). Report for operation of rip current warning system in 2021.
  23. Lascody, R. (1998). "East central Florida rip current program." National Weather Digest, Vol. 22, pp. 25-30.
  24. Longuet-Higgins, M.S., Cartwright, D.E., and Smith, N.D. (1963). "Observations of the directional spectrum of sea waves using the motions of a floating buoy." Ocean Wave Spectra, Prentice-Hall, NJ, U.S., pp. 111-136.
  25. Lushine, J. (1991). "A study of rip current drownings and related weather factors." National Weather Digest, Vol. 16, pp. 13-19.
  26. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., and Rikiishi, K. (1975). "Observations of the directional spectrum of ocean waves using a cloverleaf buoy." Journal of Physical Oceanography, Vol. 5, pp. 750-760. https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  27. Moulton, M., Dusek, G., Elgar, S., and Raubenheimer, B. (2017). "Comparison of rip current hazard likelihood forecasts with observed rip current speeds." Weather and Forecasting, Vol. 32, pp. 1659-1666. https://doi.org/10.1175/WAF-D-17-0076.1
  28. National Oceanic and Atmospheric Administration (NOAA) (2022a). Natural hazard statistics, National weather service, accessed 1 September 2022, .
  29. National Oceanic and Atmospheric Administration (NOAA) (2022b). Weather related fatality and injury statistics, National weather service, accessed 1 September 2022, .
  30. Nelko, V., and Dalrymple, R.A. (2008). "Rip currents: Mechanisms and observations." Proceeding of 31st International Conference Coastal Engineering, Edited by Smith, J.M., Singapore, World Science Press, pp. 888-900.
  31. Peregrine, D.H. (1998). "Surf zone currents." Theoretical and Computational Fluid Dynamics, Vol. 10, pp. 295-309. https://doi.org/10.1007/s001620050065
  32. Peregrine, D.H. (1999). "Large-scale vorticity generation by breakers in shallow and deep water." European Journal of Mechanics. B, Vol. 18, pp. 403-408. https://doi.org/10.1016/S0997-7546(99)80037-5
  33. Schrader, M. (2004). Evaluation of the modified ECFL LURCS rip current forecasting scale and conditions of selected rip current events in Florida. Master's Thesis, University of Florida, FL, U.S.
  34. Shin, C.H., Noh, H.K., Yoon, S.B., and Choi, J. (2014). "Understanding of rip current generation mechanism at Haeundae Beach of Korea: Honeycomb waves." Journal of Coastal Research, Vol. 72, Special Issue, pp. 11-15. https://doi.org/10.2112/SI72-003.1
  35. Tang, E.-S., and Dalrymple, R.A. (1989). "Nearshore circulation: Rip currents and wave groups." Advances in Coastal and Ocean Engineering, Plenum Press, NY, U.S., pp. 205-230.
  36. Yoon, S.B., Kwon, S.J., Bae, J.S., and Choi, J. (2012). "Investigation of characteristics of rip current at Haeundae beach based on observation analysis and numerical experiments." Journal of the Korean Society of Civil Engineers, Vol. 23, No., 4B, pp. 243-251.