• Title/Summary/Keyword: directional information of edges

Search Result 49, Processing Time 0.023 seconds

Edge Detection Using Mean Difference within a Connected Bimodal Region (이분된 지역평균의 차를 이용한 경계점 검출법)

  • Jung, Moon-Jo;Shim, Young-Serk;Hwang, Chan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1360-1363
    • /
    • 1987
  • Two edge detection methods are devised and tested. First one makes use of mean-difference between two connected regions after bimodal thresholding within a local window. It appears experimentally to provide reduced edge width maintaining good connectivity. It seems due to the use of the threshold obtained from a larger neighborhood. Second one uses additionally the gradient information to detect approximate zero crossing points of second directional derivative. This provides edges thinned nearly to one pixel width.

  • PDF

A Study on the Edge Extraction and Segmentation of Range Images (거리 영상의 에지 추출 및 영역화에 관한 연구)

  • 이길무;박래홍;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1074-1084
    • /
    • 1995
  • In this paper, we investigate edge extraction and segmentation of range images. We first discuss problems that arise in the conventional region-based segmentation methods and edge-based ones using principal curvatures, then we propose an edge-based algorithm. In the proposed algorithm, we extract edge contours by using the Gaussian filter and directional derivatives, and segment a range image based on extracted edge contours, Also we present the problem that arises in the conventional thresholding, then we propose a new threshold selection method. To solve the problem that local maxima of the first- and second- order derivatives gather near step edges, we first find closed roof edge contours, fill the step edge region, and finally thin edge boundaries. Computer simulations with several range images show that the proposed method yields better performance than the conventional one.

  • PDF

Interactive Human Intention Reading by Learning Hierarchical Behavior Knowledge Networks for Human-Robot Interaction

  • Han, Ji-Hyeong;Choi, Seung-Hwan;Kim, Jong-Hwan
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1229-1239
    • /
    • 2016
  • For efficient interaction between humans and robots, robots should be able to understand the meaning and intention of human behaviors as well as recognize them. This paper proposes an interactive human intention reading method in which a robot develops its own knowledge about the human intention for an object. A robot needs to understand different human behavior structures for different objects. To this end, this paper proposes a hierarchical behavior knowledge network that consists of behavior nodes and directional edges between them. In addition, a human intention reading algorithm that incorporates reinforcement learning is proposed to interactively learn the hierarchical behavior knowledge networks based on context information and human feedback through human behaviors. The effectiveness of the proposed method is demonstrated through play-based experiments between a human and a virtual teddy bear robot with two virtual objects. Experiments with multiple participants are also conducted.

Optimal Scheme of Retinal Image Enhancement using Curvelet Transform and Quantum Genetic Algorithm

  • Wang, Zhixiao;Xu, Xuebin;Yan, Wenyao;Wei, Wei;Li, Junhuai;Zhang, Deyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2702-2719
    • /
    • 2013
  • A new optimal scheme based on curvelet transform is proposed for retinal image enhancement (RIE) using real-coded quantum genetic algorithm. Curvelet transform has better performance in representing edges than classical wavelet transform for its anisotropy and directional decomposition capabilities. For more precise reconstruction and better visualization, curvelet coefficients in corresponding subbands are modified by using a nonlinear enhancement mapping function. An automatic method is presented for selecting optimal parameter settings of the nonlinear mapping function via quantum genetic search strategy. The performance measures used in this paper provide some quantitative comparison among different RIE methods. The proposed method is tested on the DRIVE and STARE retinal databases and compared with some popular image enhancement methods. The experimental results demonstrate that proposed method can provide superior enhanced retinal image in terms of several image quantitative evaluation indexes.

A Study on the step edge detection method based on image information measure and eutral network (영상의 정보척도와 신경회로망을 이용한 계단에지 검출에 관한 연구)

  • Lee, S.B.;Kim, S.G.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.549-555
    • /
    • 2006
  • An edge detection is an very important area in image processing and computer vision, General edge detection methods (Robert mask, Sobel mask, Kirsh mask etc) are a good performance to detect step edge in a image but are no good performance to detect step edge in a noses image. We suggested a step edge detection method based on image information measure and neutral network. Using these essential properties of step edges, which are directional and structural and whose gray level distribution in neighborhood, as a input vector to the BP neutral network we get the good result of proposed algorithm. And also we get the satisfactory experimental result using rose image and cell images an experimental and analysing image.

An Effective Steel Plate Detection Using Eigenvalue Analysis (고유값 분석을 이용한 효과적인 후판 인식)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1033-1039
    • /
    • 2012
  • In this paper, a simple and robust algorithm is proposed for detecting each steel plate from a image which contains several steel plates. Steel plate is characterized by line edge, so line detection is a fundamental task for analyzing and understanding of steel plate images. To detect the line edge, the proposed algorithm uses the small eigenvalue analysis. The proposed approach scans an input edge image from the top left corner to the bottom right corner with a moving mask. A covariance matrix of a set of edge pixels over a connected region within the mask is determined and then the statistical and geometrical properties of the small eigenvalue of the matrix are explored for the purpose of straight line detection. Using the detected line edges, each plate is determined based on the directional information and the distance information of the line edges. The results of the experiments emphasize that the proposed algorithm detects each steel plate from a image effectively.

Recognition of Car License Plates Using Difference Operator and ART2 Algorithm (차 연산과 ART2 알고리즘을 이용한 차량 번호판 통합 인식)

  • Kim, Kwang-Baek;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2277-2282
    • /
    • 2009
  • In this paper, we proposed a new recognition method can be used in application systems using morphological features, difference operators and ART2 algorithm. At first, edges are extracted from an acquired car image by a camera using difference operators and the image of extracted edges is binarized by a block binarization method. In order to extract license plate area, noise areas are eliminated by applying morphological features of new and existing types of license plate to the 8-directional edge tracking algorithm in the binarized image. After the extraction of license plate area, mean binarization and mini-max binarization methods are applied to the extracted license plate area in order to eliminated noises by morphological features of individual elements in the license plate area, and then each character is extracted and combined by Labeling algorithm. The extracted and combined characters(letter and number symbols) are recognized after the learning by ART2 algorithm. In order to evaluate the extraction and recognition performances of the proposed method, 200 vehicle license plate images (100 for green type and 100 for white type) are used for experiment, and the experimental results show the proposed method is effective.

A Genetic Algorithm for the Chinese Postman Problem on the Mixed Networks (유전자 알고리즘을 이용한 혼합 네트워크에서의 Chinese Postman Problem 해법)

  • Jun Byung Hyun;Kang Myung Ju;Han Chi Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.181-188
    • /
    • 2005
  • Chinese Postman Problem (CPP) is a problem that finds a shortest tour traversing all edges or arcs at least once in a given network. The Chinese Postman Problem on Mixed networks (MCPP) is a Practical generalization of the classical CPP and it has many real-world applications. The MCPP has been shown to be NP-complete. In this paper, we transform a mixed network into a symmetric network using virtual arcs that are shortest paths by Floyd's algorithm. With the transformed network, we propose a Genetic Algorithm (GA) that converges to a near optimal solution quickly by a multi-directional search technique. We study the chromosome structure used in the GA and it consists of a path string and an encoding string. An encoding method, a decoding method, and some genetic operators that are needed when the MCPP is solved using the Proposed GA are studied. . In addition, two scaling methods are used in proposed GA. We compare the performance of the GA with an existing Modified MDXED2 algorithm (Pearn et al. , 1995) In the simulation results, the proposed method is better than the existing methods in case the network has many edges, the Power Law scaling method is better than the Logarithmic scaling method.

  • PDF

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Image restoration by Adaptive Regularization Considering the Edge Direction (윤곽 방향을 고려한 적응 정칙화 영상 복원)

  • 김태선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1588-1595
    • /
    • 2000
  • To restore image degraded by out-of-focus blur and additivie noise a regularized iterative restoration is used. In concentional method, regularization is usually applied to all over the image without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solve this problem we propose an adaptive regularization iterative restoration using directional regularization operator considering edges in four directions and the regularization operator with on direction for flat regions. We verified that the proposed method show better results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions. As a result it showed visually better image and improved better ISNR further than the conventional methods.

  • PDF