• 제목/요약/키워드: direction vector

Search Result 707, Processing Time 0.029 seconds

A Deinterlacing Method Based on the Edge Direction Vectors (에지 방향 벡터 기반 디인터레이싱 기법)

  • Lee, Kwang-Bo;Park, Sung-Han
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.47-53
    • /
    • 2008
  • A new intra-field deinterlacing algorithm with edge direction vector (EDV) in the image block is introduced. This proposed filter is suitable to the region with high motion or scene change. We first introduce an EDV, which is computed by Sobel mask used edge map, so that filer resolution of the edge direction can be acquired. The proposed EDV oriented deinterlacing system operates by identifying small pixel variations in five orientations, $26.5^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, and $153.5^{\circ}$. The EDV values work as inputs of Sobel mask and return edge direction degree and confidence parameters. Based on edge direction degree and confidence parameters the missing pixel is computed. The results of computer simulations demonstrate that the proposed method outperforms a number of intra-field deinterlacing methods in the literature.

Posterior Inference in Single-Index Models

  • Park, Chun-Gun;Yang, Wan-Yeon;Kim, Yeong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.161-168
    • /
    • 2004
  • A single-index model is useful in fields which employ multidimensional regression models. Many methods have been developed in parametric and nonparametric approaches. In this paper, posterior inference is considered and a wavelet series is thought of as a function approximated to a true function in the single-index model. The posterior inference needs a prior distribution for each parameter estimated. A prior distribution of each coefficient of the wavelet series is proposed as a hierarchical distribution. A direction $\beta$ is assumed with a unit vector and affects estimate of the true function. Because of the constraint of the direction, a transformation, a spherical polar coordinate $\theta$, of the direction is required. Since the posterior distribution of the direction is unknown, we apply a Metropolis-Hastings algorithm to generate random samples of the direction. Through a Monte Carlo simulation we investigate estimates of the true function and the direction.

License-Plate Extraction for Parking Regulation Images with Various Background and Photographing Direction (다양한 배경과 촬영 방향에서 취득한 주차 단속 영상에서의 번호판 추출)

  • 권숙연;김영원;전병환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1291-1294
    • /
    • 2003
  • This paper presents an approach to extract license plates from parking regulation images which is captured in various photographing direction and complex background. first, we search each row at regular intervals starting from the bottom of a license-plate image, and we set up a rough region for a certain zone in which the sign of intensity vector changes frequently enough and color of license plate is detected enough, assuming it as a candidate location of a license plate. And then, we extract an elaborate area of a license plate by horizontally and vertically projecting vertical edges. Here, tar types of the private and the public, are easily classified according to the color of extracted plates. To evaluate proposed method, we used 200 actual regulation images. As a result, the proposed method showed extraction rate of 96%, which is 9% higher than the previous method using only intensity vector.

  • PDF

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.

Edge Dependent Interpolation Based on Adaptive Search Range (적응적 탐색 범위를 적용한 에지 기반 순차주사화)

  • Chang, Joon-Young;Kang, Moon-Gi
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.803-804
    • /
    • 2008
  • In this paper, we propose an edge dependent interpolation (EDI) method based on adaptive search range. The proposed EDI method uses the vector matching to determine the edge direction, and the vector matching process is terminated when the previous sum of absolute difference (SAD) is smaller than the next one. The adaptive search range method enables the EDI algorithm to estimate edge direction more accurately and to reduce the computational complexity. The experimental results show that the proposed method produces better performance than conventional algorithms.

  • PDF

Contour Extraction of Moving Object using Connectivity of Motion Block (움직임 블록간 연결정보를 이용한 움직임 객체의 윤곽선 추출)

  • 김진희;이주호;정승도;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.231-234
    • /
    • 2002
  • This paper proposes a new approach to extract contour of moving object from compressed video stream. We segment the area of moving object by using motion vector and extract the motion object block from it. And then we describe the connectivity direction of outline moving block, detect the edge related to connectivity direction in the block and finally obtain the contour by connecting the edges. This can divide the moving object only with motion vector and detect the exact contour on the basis of the edge automatically. Also, we can reduce spending time using motion block and remove the noise with directional edge. The experimental results demonstrate the accurate and effective qualify of the proposed method.

  • PDF

Conjugate finite-step length method for efficient and robust structural reliability analysis

  • Keshtegar, Behrooz
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.415-422
    • /
    • 2018
  • The Conjugate Finite-Step Length" (CFSL) algorithm is proposed to improve the efficiency and robustness of first order reliability method (FORM) for reliability analysis of highly nonlinear problems. The conjugate FORM-based CFSL is formulated using the adaptive conjugate search direction based on the finite-step size with simple adjusting condition, gradient vector of performance function and previous iterative results including the conjugate gradient vector and converged point. The efficiency and robustness of the CFSL algorithm are compared through several nonlinear mathematical and structural/mechanical examples with the HL-RF and "Finite-Step-Length" (FSL) algorithms. Numerical results illustrated that the CFSL algorithm performs better than the HL-RF for both robust and efficient results while the CFLS is as robust as the FSL for structural reliability analysis but is more efficient.

EEG Based Brain-Computer Interface System Using Time-multiplexing and Bio-Feedback (Time-multiplexing과 바이오 피드백을 이용한 EEG기반 뇌-컴퓨터 인터페이스 시스템)

  • Bae, Il-Han;Ban, Sang-Woo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.236-243
    • /
    • 2004
  • In this paper, we proposed a brain-computer interface system using EEG signals. It can generate 4 direction command signal from EEG signals captured during imagination of subjects. Bandpass filter used for preprocessing to detect the brain signal, and the power spectrum at a specific frequency domain of the EEG signals for concentration status and non-concentration one is used for feature. In order to generate an adequate signal for controlling the 4 direction movement, we propose a new interface system implemented by using a support vector machine and a time-multiplexing method. Moreover, bio-feed back process and on-line adaptive pattern recognition mechanism are also considered in the proposed system. Computer experimental results show that the proposed method is effective to recognize the non-stational brain wave signal.

Real Hypersurfaces with k-th Generalized Tanaka-Webster Connection in Complex Grassmannians of Rank Two

  • Jeong, Imsoon;Lee, Hyunjin
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.525-535
    • /
    • 2017
  • In this paper, we consider two kinds of derivatives for the shape operator of a real hypersurface in a $K{\ddot{a}}hler$ manifold which are named the Lie derivative and the covariant derivative with respect to the k-th generalized Tanaka-Webster connection ${\hat{\nabla}}^{(k)}$. The purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank two, whose Lie derivative of the shape operator coincides with the covariant derivative of it with respect to ${\hat{\nabla}}^{(k)}$ either in direction of any vector field or in direction of Reeb vector field.

Sensor Fault Detection of Small Turboshaft Engine for Helicopter

  • Seong, Sang-Man;Rhee, Ihn-Seok;Ryu, Hyeok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.97-104
    • /
    • 2008
  • Most of engine control systems for helicopter turboshaft engines are equipped with dual sensors. For the system with dual redundancy, analytic methods are used to detect faults based on the system dynamical model. Helicopter engine dynamics are affected by aerodynamic torque induced from the dynamics of the main rotor. In this paper an engine model including the rotor dynamics is constructed for the T700-GE-700 turboshaft engine powering UH-60 helicopter. The singular value decomposition(SVD) method is applied to the developed model in order to detect sensor faults. The SVD method which do not need an additional computation to generate residual uses the characteristics that the system outputs in direction of the left singular vector if an input is applied in direction of the right singular vector. Simulations show that the SVD method works well in detecting and isolating the sensor faults.

  • PDF