• Title/Summary/Keyword: direct tunnelling

Search Result 27, Processing Time 0.022 seconds

Evaluation of ground characteristics near underground rainfall storage facilities using shear wave velocity (전단파 속도를 이용한 지하 저류조 주변 지반특성 평가)

  • Jo, Seon-Ah;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.225-236
    • /
    • 2014
  • Shear wave velocity was used to estimate the geotechnical characteristics (void ratio and shear strength) of ground near an underground rainfall storage facility. An oedometer cell was utilized to measure the shear wave velocity and the displacement of specimens. Shear strengths were obtained by direct shear tests. The relationships along the shear wave velocity, void ratio, and shear strength were verified and used to infer the shear strength profile with the depth. In addition, changes in shear strength due to the construction of the underground rainfall storage system were estimated using the suggested method. The results show that the in-situ shear strength deduced from the shear wave velocity-void ratio-shear strength relationship is in good agreement with that obtained from an in-situ investigation (SPT).

An experimental study on early strength of shotcrete (숏크리트의 조기강도에 대한 실험적 연구)

  • Song, Yong-Su;Ryu, Jong-Hyun;Lim, Heui-Dae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.285-294
    • /
    • 2010
  • As there are increasing number of tunneling works these days, shotcrete is used as primary supports in order to secure the stability of tunnels. The quality of shotcrete has a direct influence on tunnels, because it is a primary support which secures the stability of completed tunnels as well as the stability of tunnels under excavation. Especially in case that ordinary shotcrete is used under weak rock conditions or at water gushing sections, more shotcrete is needed and rebound ratio increases. As a result, it is hard to keep economic feasibility. In addition to it, in subway construction, there are cases of separated excavation and it may have a bad influence on construction period or quality. Therefore, in this study, we are going to evaluate the early strength of powder type accelerator.

The Ways for Bi on Pt to Enhance Formic Acid Oxidation

  • Hyein Lee;Young Jun Kim;Youngku Sohn;Choong Kyun Rhee
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 2023
  • This work presents a correlation between the behavior of formic acid oxidation (FAO) on various Bi-modified Pt(poly) disk electrodes and their morphologies observed on Bi-modified Pt(111) disk electrodes using electrochemical scanning tunneling microscopy (EC-STM) to understand the effects of Bi on Pt. To distinguish the FAO activities of Bi on Pt and plain Pt around Bi, additional Pt was intentionally deposited using two different routes: direct route and iodine route. In direct route, Pt was directly deposited on Bi islands and plain Pt sites around Bi islands, while in iodine route, Pt was exclusively deposited on Bi islands by protecting plain Pt sites with adsorbed iodine. Thus, a comparison of FAO performances on the two Bi-modified Pt electrodes with additional Pt (deposited in the different ways) disclosed a difference in FAO performances on plain Pt sites and Bi islands. When Bi coverage was ~0.04, the Bi deposits were scattered Bi islands enhancing FAO on Pt(poly). The additional Pt deposits using direct route increased FAO efficiency, while the ones using iodine route slightly decreased FAO current. The EC-STM observations indicated that Pt deposits around Bi islands, not on Bi islands, were responsible for the FAO current increase on Bi-modified Pt(poly). The FAO efficiency on Bi-modified Pt(poly) with a Bi coverage of ~0.25 increased by a factor of 2. However, the additional Pt deposits using the two Pt deposition routes notably decreased the FAO current. The dependency of FAO on Bi coverage was discussed in terms of electronic effect and ensemble effect.

Development of a back analysis program for reasonable derivation of tunnel design parameters (합리적인 터널설계정수 산정을 위한 역해석 프로그램 개발)

  • Kim, Young-Joon;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.357-373
    • /
    • 2013
  • In this paper, a back analysis program for analyzing the behavior of tunnel-ground system and evaluating the material properties and tunnel design parameters was developed. This program was designed to be able to implement the back analysis of underground structure by combination of using FLAC and optimized algorithm as direct method. In particular, Rosenbrock method which is able to do direct search without obtaining differential coefficient was adopted for the back analysis algorithm among optimization methods. This back analysis program was applied to the site to evaluate the design parameters. The back analysis was carried out using field measurement results from 5 sites. In the course of back analysis, nonlinear regression analysis was carried out to identify the optimum function of the measured ground displacement. Exponential function and fractional function were used for the regression analysis and total displacement calculated by optimum function was used as the back analysis input data. As a result, displacement recalculated through the back analysis using measured displacement of the structure showed 4.5% of error factor comparing to the measured data. Hence, the program developed in this study proved to be effectively applicable to tunnel analysis.

Effect of size and slope angle of tooth-shaped asperity on shear fracturing characteristics (삼각형 돌출부의 크기 및 경사각이 전단파괴 형상 특성에 미치는 영향)

  • Kim, Won-Keun;Choi, Woo-Yong;Park, Jong-Deok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.431-442
    • /
    • 2013
  • Most of previous studies have insufficiently investigated the shear behavior and fracturing characteristics, experimentally in respect to the change of size of tooth-shaped surface asperity such as length and slope angle in a broad range. This study investigates the influence of the length and slope angle of a tooth-shaped surface asperity on the fracturing characteristics and the interface shear strength by using direct shear test apparatus. A total of 36 interface direct shear tests were conducted by changing the three types of slope angle of surface asperity, four type of length, and three types of normal stress. The shape of fractured surface after the test was quantified by using a three-dimensional surface roughness measurement apparatus. Through the experimental test results, the characteristics of fractured shape of surface asperity according to the normal stress were investigated. In addition, fractured length and height were quantified at each slope angle of surface asperity under a certain normal stress condition.

Characteristics of velocity-dependent shear behavior of saw-cut rock joints at different shear velocities (편평한 암석절리면의 속도 의존적 전단거동 특성)

  • Park, Byung-Ki;Lee, Chang-Soo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.121-131
    • /
    • 2007
  • Recently, the probability of rock joints being exposed to free faces is getting higher for the scale of rock mass structures gets larger. Also, the frequency of occurring dynamic events such as earthquakes and blasting has been increasing. Thus, the shear behavior of rock joints under different conditions needs to be investigated. In this study, a series of direct shear tests were carried out under various conditions to examine the velocity-dependent shear behavior of saw-cut rock joints. Two types of direct shear test were carried out. The first was to examine the velocity-dependent shear behavior of saw-cut rock joints at seven different shear velocities, each with three different normal stresses. The second was to examine the shear behavior of saw-cut rock joints when three different instantaneous shear velocities changed. As a result, the coefficient of friction was affected by normal stress. The breakpoint velocity, the point when the change of shear velocity starts to affect the frictional behavior, became lower as normal stress increased. Also, as the shear velocity became lower, the degree of stress-drop on stick-slip behavior became larger. As a result of examining the changes of friction coefficient, velocity weakening (decrease of friction coefficient) was observed. The decrement of friction coefficient due to the changes of shear velocity under slow shear velocity was larger than that under fast shear velocity.

  • PDF

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.

A study on the Change of Uniaxial Compressive Strength and Young's Modulus According to the Specimen Size of Intact Material (무결함 재료의 크기에 따른 강도와 탄성계수의 변화에 관한 연구)

  • Lee, Seung-Woo;Song, Jae-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.205-217
    • /
    • 2006
  • Rock and discontinuities are main factors consisting of a rock mass and the physical properties of each factor have direct effects on the mechanical stability of artificial structures in the rock mass. Because physical properties of the rock and discontinuities change a lot according to the size of test materials, a close attention is needed when the physical properties, obtained from laboratory tests, are used for the design of field structures. In this study, change of physical properties of intact materials due to the change of their size are studied. Six kinds of artificial materials including crystal, instead of an intact rock, are adopted for the study to guarantee the homogeneity of specimen materials even with relatively large size. Uniaxial strength and Young's modulus of each artificial material are checked out for a size effect and compared with the predicted values by Buckingham's theorem - dimensional analysis. A numerical analysis using PFC (Particle Flow Code) is also applied and primary factors influencing on the size effect are investigated.

Introduction to the quality evaluation of lattice girder using nondestructive test (비파괴법을 활용한 격자지보의 성능평가 기법 제안)

  • Jung, Hyuk-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.431-439
    • /
    • 2016
  • This paper dealt with contents of the quality evaluation method of lattice girder utilizing non-destructive method. Quality evaluation of ordinary lattice girder is performed through the tensile strength test of structural steel and visual inspection. The tensile strength test of structural steel is performed by collecting samples of lattice girder brought into the site, during which lattice girder must be damaged to obtain sample. In addition to such disadvantage, tensile strength tester is not available at the site in most cases, requiring an inconvenient service from test certification agency. In addition, it is substituted by mile sheet issued during the production of structural steel, which inevitably lacks reliability. Furthermore, visual inspection at the site entails a problem of lack of reliability, thereby requiring a method of easily and quickly evaluating the quality of lattice girder without damaging the material. Accordingly, this study comparatively analyzed the yield strength of tensile strength test and the yield strength of instrumented indentation test with same sample. The test results ensured over 95% precision level for the instrumented indentation test, based on which a quality evaluation method based on instrumented indentation test that allowed onsite direct quality evaluation is proposed.

Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis (회귀분석을 이용한 경주·울산 지역에 분포하는 단층 핵의 전단강도 범위 설정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.127-140
    • /
    • 2015
  • A fault is one of the critical factors that may lead to a possible ground collapse occurring in construction site. A fault core, however, possibly acting as a failure plane in whole fault zone, is composed of fractured rock and gouge nonuniformly distributed and thus can be characterized by its wide range of shear strength which is generally acquired by experimental method for stability analysis. In this study, we performed direct shear test and grain size distribution analysis for 62 fault core samples cropped from 12 different spots located in the vicinity of Kyongju and Ulsan, Korea. As a result, the range of shear strength representing the characteristics of fault cores in the study regions is determined with regard to vertical stress using a regression analysis for experiment data. The weight ratio of gravels in the samples is proportional to the shear strength and that of silt and clay is in inverse proportion to the shear strength. For most samples, the coefficient of determination is over 0.7 despite of inhomogeneity of them and consequently we determined the lower limit and upper limit of the shear strength with regard to the weight ratio by setting the confidence interval of 95%.