• 제목/요약/키워드: direct piezoelectric response

검색결과 29건 처리시간 0.019초

PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링 (Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response)

  • 호 득 유이;이포영;김정태
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.91-99
    • /
    • 2012
  • 본 연구에서는 PZT 소자의 정압전 효과에 의한 동적 응답신호를 이용하는 보 구조물 손상 모니터링 기법을 제안하였다. 특히, 모드 변형에너지기반 보 구조물 손상 모니터링에 PZT 정압전 응답신호를 입력자료로 활용하는 방안에 대한 연구에 주안점이 있다. 먼저, PZT 소자의 정압전 효과 및 동적 변형률 응답의 이론적 배경을 요약하였다. 다음으로, 모드 변형에너지기반 보 구조물 손상위치 모니터링 기법을 제시하였다. 제시된 기법의 적합성을 검증하기 위해, 캔틸레버 보 모형을 대상으로 강제진동 실험을 수행하였으며, 세 종류의 센서(가속도계, PZT 센서, 변형률계)를 통해 동적 응답신호가 계측되었다. 손상 전후에 계측된 이들 진동신호들을 사용하여 모드 변형에너지기반의 손상위치 모니터링이 수행되었다.

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.

Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell

  • Kachapi, Sayyid H. Hashemi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.277-294
    • /
    • 2020
  • In current paper, nonlocal (NLT), nonlocal strain gradient (NSGT) and Gurtin-Murdoch surface/interface (GMSIT) theories with classical theory (CT) are utilized to investigate vibration and stability analysis of Double Walled Piezoelectric Nanosensor (DWPENS) based on cylindrical nanoshell. DWPENS simultaneously subjected to direct electrostatic voltage DC and harmonic excitations, structural damping, two piezoelectric layers and also nonlinear van der Waals force. For this purpose, Hamilton's principle, Galerkin technique, complex averaging and with arc-length continuation methods are used to analyze nonlinear behavior of DWPENS. For this work, three nonclassical theories compared with classical theory CT to investigate Dimensionless Natural Frequency (DNF), pull-in voltage, nonlinear frequency response and stability analysis of the DWPENS considering the nonlocal, material length scale, surface/interface (S/I) effects, electrostatic and harmonic excitation.

압전 작동기 거동해석을 위한 유한요소 모사 (Finite Element Analysis of A Piezoelectric Actuator)

  • 이흥식;조종두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1401-1406
    • /
    • 2003
  • Mechanical behavior of a piezoelectric actuator is studied as a preceding research for the manufacturing of three-dimensional micro-structures. It is needed to examine the simulation of a piezoelectric actuator according to applied direction of voltage, by researching displacement characterization of piezoelectric material through piezoelectric theory. To this end, finite element modeling is employed to study the response of a piezoelectric material under the various input voltages. Where the actuator is simulated by use of ANSYS. To avoid direct contact piezoelectric material with working fluid, silicon, polymer, etc., the actuator is modeled with nickel fixed diaphragm.

  • PDF

A new piezoelectric shell element and its application in static shape control

  • Chen, Su Huan;Yao, Guo Feng;Lian, Hua Dong
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.491-506
    • /
    • 2001
  • In this paper, a new three-dimensional piezoelectric thin shell element containing an integrated distributed piezoelectric sensor and actuator is proposed. The distributed piezoelectric sensor layer monitors the structural shape deformation due to the direct effect and the distributed actuator layer suppresses the deflection via the converse piezoelectric effect. A finite element formulation is presented for static response of laminated shell with piezoelectric sensors/actuators. An eight-node and forty-DOF shell element is built. The performance of the shell elements is improved by reduced integration technique. The static shape control of structure is derived. The shell element is verified by calculating piezoelectric polymeric PVDF bimorph beam. The results agreed with those obtained by theoretical analysis, Tzou and Tseng (1990) and Hwang and Park (1993) fairly well. At last, the static shape control of a paraboloidal antenna is presented.

압전재료를 이용한 복합적층판의 구조제어에 관한 모델링 (Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators)

  • 황우석;황운봉;한경섭;박현철
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.90-100
    • /
    • 1993
  • 본 연구에서는 압전 감지기/작동기를 이용한 복합적층판의 진동제어해석을 위 하여 판요소를 사용한 능률적인 유한요소코드 개발에 있다. 운동방정식은 고전 적층 판이론과 Hamilton의 법칙을 이용하여 유도하며 압전방정식으로부터 전기적-기계적 연 계를 고려한 감지식과 작동식을 구한다.각식들은 유한요소 보간함수에 의하여 절점 변위에 대한 행렬방정식으로 변환된다. 요소마다 하나의 전기적 자유도를 가진 4-절 점 12-자유도 판요소를 사용하여 효율적인 계산을 가능하게 하였다. 압전 감지기/작 동기를 도입함에 있어 하나의 전극에 대해 압전 감지기/작동기는 하나의 감지/작동전 압을 갖는다. 각 요소에 전극번호를 부가함으로써 다양한 형상의 전극을 쉽게 모델 링하였으며 전극의 특성도 충분히 고려하였다. 전기적 하중에 의한 압전보의 변형과 변형에 대한 감지전압에 대한 계산을 수행하여 기존의 연구와 비교함으로써 본 프로그 램의 타당성을 확인하였다. 나아가 여러가지 전극형상에 대한 복합재료 평판의 시간 영역과 주파수영역에서 응답을 계산하였다.

Active vibration robust control for FGM beams with piezoelectric layers

  • Xu, Yalan;Li, Zhousu;Guo, Kongming
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.33-43
    • /
    • 2018
  • The dynamic output-feedback robust control method based on linear matrix inequality (LMI) method is presented for suppressing vibration response of a functionally graded material (FGM) beam with piezoelectric actuator/sensor layers in this paper. Based on the reduced model obtained by using direct mode truncation, the linear fractional state space representation of a piezoelectric FGM beam with material properties varying through the thickness is developed by considering both the inherent uncertainties in constitution material properties as well as material distribution and the model error due to mode truncation. The dynamic output-feedback robust H-infinity control law is implemented to suppress the vibration response of the piezoelectric FGM beam and the LMI method is utilized to convert control problem into convex optimization problem for efficient computation. In numerical studies, the flexural vibration control of a cantilever piezoelectric FGM beam is considered to investigate the accuracy and efficiency of the proposed control method. Compared with the efficient linear quadratic regulator (LQR) widely employed in literatures, the proposed robust control method requires less control voltage applied to the piezoelectric actuator in the case of same control performance for the controlled closed-loop system.

Piezocomposite 재료를 사용한 회전하는 블레이드의 진동억제 (Vibration suppression of rotating blade with piezocomposite materials)

  • 최승찬;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.282-285
    • /
    • 2004
  • The main purpose of this study is the vibration suppression of rotating composite blade containing distributed piezoelectric sensors and actuators. The blade is modeled by thin-walled, single cell composite beam including the warping function, centrifugal force, Coriolis acceleration and piezoelectric effect. Further, the numerical study is performed m ing finite element method. The vibration of composite rotor is suppressed by piezocomposite actuators and PVDF sensors that are embedded between composite layers. A velocity feedback control algorithm coupling the direct and converse piezoelectric effect is used to actively control the' dynamic response of an integrated structure through a closed control loop. Responses of the rotating blade are investigated. Newmark time integration method is used to calculate the time response of the model. In the numerical simulation, the effect of parameters such as rotating speed, fiber orientation of the blade and size of actuators are studied in detail.

  • PDF

Frequency characteristic analysis on acoustic emission of mortar using cement-based piezoelectric sensors

  • Lu, Youyuan;Li, Zongjin
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.321-341
    • /
    • 2011
  • Acoustic emission (AE) monitoring was conducted for mortar specimens under three types of static loading patterns (cubic-splitting, direct-shear and pull-out). Each of the applied loading patterns was expected to produce a particular fracture process. Subsequently, the AEs generated by various fracture or damage processes carried specific information on temporal micro-crack behaviors of concrete for post analysis, which was represented in the form of detected AE signal characteristics. Among various available characteristics of acquired AE signals, frequency content was of great interest. In this study, cement-based piezoelectric sensor (as AE transducer) and home-programmed DEcLIN monitoring system were utilized for AE monitoring on mortar. The cement-based piezoelectric sensor demonstrated enhanced sensitivity and broad frequency domain response range after being embedded into mortar specimens. This broad band characteristic of cement-based piezoelectric sensor in frequency domain response benefited the analysis of frequency content of AE. Various evaluation methods were introduced and employed to clarify the variation characteristics of AE frequency content in each test. It was found that the variation behaviors of AE frequency content exhibited a close relationship with the applied loading processes during the tests.

밸브리스 압전펌프 연동구동 제어기 설계 (Design of Multi-Phase Shift Controller for Valveless PZT Pump)

  • 조정대;박경민;노종호;함영복;유진산
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1282-1285
    • /
    • 2004
  • The high voltage driving system with multi-phase shifter including piezoelectric actuators comprised a driving power unit for outputting the driving power by converting input alternate current into direct current, a frequency shifting unit for supplying the direct current power and shifting or generating a frequency, a high-voltage amplification unit for amplifying the input signal outputted from the driving power unit and the frequency shifting unit into a high-voltage signal, and a phase shifting unit for shifting the phase difference of the amplified signal applied to the high-voltage amplification unit and driving plural piezoelectric actuators sequentially. The results that the operating voltage was stable, the voltage loss ratio was low and the response velocity was fast could be obtained. An experiment on performance of the high voltage driving system with multi-phase shifter designed and manufactured as above described was conducted by using a piezoelectric pump having 3 sheets of round unimorph piezoelectric actuators laminated respectively in a rectangular case. It sucks any fluid by causing the first piezoelectric actuator to shift from the inlet porter side, the phase delay of 60$^{\circ}$ causes the second piezoelectric actuator to begin to shift, and the phase delay of 120$^{\circ}$ causes the third piezoelectric actuator to begin to shift. As a result of measuring each change in the outlet flow rate of the piezoelectric pump, it was shown that the frequency-flow rate characteristic, the voltage-flow characteristic, and the load pressure-flow rate characteristic were improved.

  • PDF