• Title/Summary/Keyword: direct kinematic method

Search Result 43, Processing Time 0.024 seconds

The Comparative Kinematic Analysis of a Volleyball Spike Serve (배구 스파이크 서브 동작의 운동학적 비교 분석)

  • Park, Jong-Chul;Back, Jin-Ho;Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.671-680
    • /
    • 2009
  • We performed a study to obtain kinematic data on the characteristics of spike serving techniques used by volleyball players, including other basic data that will be useful for in-field applications. We used three-dimensional videography to compare good tough serves and serve errors. The subjects were 3 left attackers whose spike serves were videographed (60 fileds/s). The three-dimensional coordinates were calculated using the direct linear transformation method and then analyzed using the Kwon 3D software program version 3.1. There was no difference in time elapsed. However, the vertical displacement of the center of body mass(CM) differed between the 2 types of serves: in successful serves, the CM tended to be lower, as did the maximum ball height at the time of hitting. Further, the higher the level of the hitting hand was at the moment of impact, the higher was the likelihood of scoring points. In good serves, the players tended to accelerate their CM movement just before jumping to hit the ball and descend rapidly at the moment of hitting. The hand speed along with ball velocity during the impact was proven to be higher in successful serves. Moreover, in successful serves, the shoulder angles increased to a greater extent while the elbow angles were maintained constant. This possibly resulted in faster and more precise serves. An important observation was that the angle of trunk inclination during the jump did not increase with the swing of the shoulders, muscle tendon complex.

Kinematical Analysis of the YEGA Motion on the Uneven Parallel Bars (이단 평행봉 YEGA 동작의 운동학적 분석)

  • Lee, Young-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.111-125
    • /
    • 2005
  • This study was intended to assist athletes in having a technical understanding of the Yega motion and provide basic material for improving their competitive ability by analyzing the kinematic variable of the Yega motion during the competition of the uneven parallel bar of female gymnastics. For this purpose, the game of female gymnastics participating in the uneven parallel bar game was personally videotaped using the DLT(direct linear transformation) method. An attempt was made to make a comparative analysis of the Yega motion by dividing the final first to third places into the upper group('A' group) and the sixth to eighth places into the lower group('B' group). Based on the results of actual analysis on the scenes of actual game, the following conclusion was concluded: 1. Athletes in the 'A' group showed the shorter required time on the flight phase(P3) than counterparts in the 'B' group. 2. Athletes in the 'A' group showed the little width in the horizontal displacement of the center of gravity than counterparts in the 'B' group. But athletes in the 'A' group exhibited the somewhat greater relative vertical height of the center of the body. 3. Athletes in the 'A' group showed the greater resultant velocity at the lowest point of the center of the body(E2) and at the point in time of release(E3) compared to counterparts in the 'B' group.

Kinematic Analysis of the Linking Motion from the Swallow Skill to the Nakayama Skill on the Rings (링의 스왈로에서 나까야마 기술로의 연결 동작에 대한 운동학적 분석)

  • Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 2004
  • This study was intended to contribute to allowing athletes to raise a technical understanding of two motions of high difficulty such as the Swallow motion and the Nakayama motion and enhance their competitive power by analysing the kinematical factors required to link those two motions on the competitive scene on the rings for current national athletes. For this purpose, the game of the ring event was videotaped for male heavy gymnasts participating in the final elimination match of the 2004 Athens Olympic Games. This study attempted to select the performing motions of the final 1st-and 2nd-place athletes performing the linking motions from the Swallow motion and the Nakayama motion using the DLT(direct linear transformation) method. As a result, it arrived at the following conclusion : A1 properly performed the flexing and extending movements using the angular velocity of the segment and joint as the switching motion using the body at the time of linking the motion from the Swallow skill to the Nakayama skill. A2 was evaluated to perform the skill taking the form of depending on the force at the static state. Therefore, it is thought that A1 should take care of shaking at the time of using the elasticity of the body. It is thought that in case of A2 the proper use of the elasticity of the body take care of shaking at the switching motion while taking advantage of the force will contribute to his competitive power.

Probabilistic analysis for face stability of tunnels in Hoek-Brown media

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.595-603
    • /
    • 2019
  • A modified model combining Kriging and Monte Carlo method (MC) is proposed for probabilistic estimation of tunnel face stability in this paper. In the model, a novel uniform design is adopted to train the Kriging, instead of the existing active learning function. It has advantage of avoiding addition of new training points iteratively, and greatly saves the computational time in model training. The kinematic approach of limit analysis is employed to define the deterministic computational model of face failure, in which the Hoek-Brown failure criterion is introduced to account for the nonlinear behaviors of rock mass. The trained Kriging is used as a surrogate model to perform MC with dramatic reduction of calls to actual limit state function. The parameters in Hoek-Brown failure criterion are considered as random variables in the analysis. The failure probability is estimated by direct MC to test the accuracy and efficiency of the proposed probabilistic model. The influences of uncertainty level, correlation relationship and distribution type of random variables are further discussed using the proposed approach. In summary, the probabilistic model is an accurate and economical alternative to perform probabilistic stability analysis of tunnel face excavated in spatially random Hoek- Brown media.

Efficacy of Forward Head Posture on Scapular Kinematic Changes and Shoulder Pain

  • Eunsang Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.436-445
    • /
    • 2022
  • Objective: Deformation of soft tissues around the neck and scapularcan caused by forward head posture(FHP), which has an uncomfortable effect on biomechanical changes in the scapula as well as functional disorders of the shoulder. However, studies related to direct FHP, biomechanical changes in the scapulafunction, and shoulder pain and disorder have not yet been conducted. Therefore, purpose of this study is to effect of decresedthe FHP on the shoulder function of the sacpular biomechanical examine the change in the shoulder painand disorder. Design: A randomized controlled trial Methods: The participants were 32adults(23.03±3.90 years) recruited and redivided randomly into Forward head posture corrective exercise(FHPCE) vs Control. The FHPCE group was proceeded according to the over load principle through 2steps biofeedback exercise and corrective exercise(n=16). The control (n=16) was TENS did not operated and padding 20 minute. This study was conducted 3 times a week for 4a weeks. Results: FHPCE group is improve in the results of craneocervical angle(p<0.05, 95% CI: 0.352, 4.073). In Mechanical changes of scapula in the shoulder flexion more significant improvement in FHPCE than control group[Axis X(p<0.05), Y(p<0.01), Z(p<0.01)], and shoulder abductionmore significant improvement in FHPCE than control group[xis X(p<0.01)], as well FHPCE showed significant increased in the results in the shoulder pain(p<0.05, 95% CI: -13.244, -1.566) Conclusions: This study suggected that FHP affects the biomechanical changes of the shoulder, and a new method for shoulder pain intervention

Analytical study of elastic lateral-torsional buckling of castellated steel beams under combined axial and bending loads

  • Saoula Abdelkader;Abdelrahmane B. Benyamina;Meftah Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.343-356
    • /
    • 2024
  • This paper presents an analytical solution for correctly predicting the Lateral-Torsional Buckling critical moment of simply supported castellated beams, the solution covers uniformly distributed loads combined with compressive loads. For this purpose, the castellated beam section with hexagonal-type perforation is treated as an arrangement of double "T" sections, composed of an upper T section and a lower T section. The castellated beam with regular openings is considered as a periodic repeating structure of unit cells. According to the kinematic model, the energy principle is applied in the context of geometric nonlinearity and the linear elastic behavior of materials. The differential equilibrium equations are established using Galerkin's method and the tangential stiffness matrix is calculated to determine the critical lateral torsional buckling loads. A Finite Element simulation using ABAQUS software is performed to verify the accuracy of the suggested analytical solution, each castellated beam is modelled with appropriate sizes meshes by thin shell elements S8R, the chosen element has 8 nodes and six degrees of freedom per node, including five integration points through the thickness, the Lanczos eigen-solver of ABAQUS was used to conduct elastic buckling analysis. It has been demonstrated that the proposed analytical solution results are in good agreement with those of the finite element method. A parametric study involving geometric and mechanical parameters is carried out, the intensity of the compressive load is also included. In comparison with the linear solution, it has been found that the linear stability underestimates the lateral buckling resistance. It has been confirmed that when high axial loads are applied, an impressive reduction in critical loads has been observed. It can be concluded that the obtained analytical solution is efficient and simple, and offers a rapid and direct method for estimating the lateral torsional buckling critical moment of simply supported castellated beams.

Kinematical Analysis of Somersault with Twist in Men's Vault: Focusing on the Lou Yun and Akopian Motions

  • Lim, Kyu-Chan;Park, Hyung Suh
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.243-248
    • /
    • 2016
  • Objective: The aim of this study was to determine the kinematical characteristics of somersault with twist in the Lou Yun and Akopian motions and to provide useful information to gymnastic athletes in men's vault. Method: The study subjects were 12 male adult top athletes. After 12 trials (7 Lou Yun and 5 Akopian trials) filmed by using two digital high-speed camcorders set at 90 frames/sec, kinematical data were collected through the direct linear transformation (DLT) method. The mean differences in biomechanical variables were compared during the second flight upward phase. The kinematic characteristics of somersault with twist in the Lou Yun and Akopian motions were identified. Results: In Lou Yun motion, the vertical release velocity through horse breaking was not difficult to obtain, so the athletes had enough time to prepare for the twist. Therefore, the Lou Yun motion has an advantage to make a cat twist in the pike posture. In the Akopian motion, obtaining the horizontal velocity through horse pushing was so easy that the Akopian athletes attained a large angular impulse and angular momentum. Therefore, the Akopian motion has an advantage to making a tilt twist in the body tilting posture. Conclusion: This study suggests that gymnastic athletes should control their body segment movements in order to increase the twisting angular velocity of the whole body, which requires regulation of the longitudinal moment of inertia of the body. Moreover, athletes should prepare for the shoulder and hip twists early in order to make the landing position in advance.

A Kinematics Analysis of Inward 1½ Somersault in Platform dives (플랫폼 다이빙 뒤로서서 앞으로뛰기 1½ 회전동작의 운동학적 분석)

  • Lee, Jong-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.139-149
    • /
    • 2006
  • This study is to analyze the kinematic variables of inward $1{\frac{1}{2}}$ somersault in platform diver. For the manner, 3 people form the national diving team in the year 2000were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth's low-pass filterin method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows. However, horizontal distance which is the change of the COG, form the point of the jump to the point of Event 3 where the player is out of the board range completely, Subject B showed 105.1cm and 71.1cm of the vertical distance which are shorter horizontal distance and higher vertical distance, thus, took a great advantage of the position to prepare for the entry. Therefore, if a player takes higher position by speeding up the vertical velocity at the moment of the jumping off the board, and stays in the air longer, the player can have more time to show his skill. Because of the use of the characteristics of the inward somersault, keeping the safe distance form the board is important but in order to higher the completeness, it is ideal to keep the horizontal distance little over 100cm. Also, the angles of shoulder and elbow from Event 1 to 4, depending on swing of the arms, motions in the air, getting ready for the entry, showed some difference individual by individual, according to the velocity of the thigh and shank showed much difference while getting ready and take-off, and it's because of the individual's different bending and straightening for horizontal and vertical distance.

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

The Kinematic Analysis of the Hand spring forward and Salto forward straight with 3/2 Turn on the Vault (도마 손 짚고 몸펴 앞 공중 돌아 540도 비틀기의 운동학적 분석)

  • Yeo, Hong-Chul;Yoon, Hee-Joong;Ryu, Ji-Seon;Jung, Chul-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.47-65
    • /
    • 2003
  • The purpose of this study was to investigate the differences of the kinematical and the kinetical factors that calculated from preflight to postflight of salto forward straight 3/2 turn motion between skitters and less-skitters. four S-VHS video cameras operating at 60Hz were used to record the performances. five elite male gymnasts were participated in this study as subjects. three-dimensional coordinates of 20 body landmarks during each trial were collected using a Direct Linear Transformation method. The digitized body landmarks were smoothed using a Butterworth second order with low pass digital filter and a cutoff frequency of 10Hz. 1. A skitter, got a high score for performance, showed shorter time and faster horizontal velocity than a less-skitter at the board contact. also, a skitter extended quickly his knee and hip joint after contacting board for preflight phase. 2. A skitter revealed faster time and horizontal velocity the vault from taking off board than a less-skiller. A skitter took a long time and high distance to get the vertical peak compared with a less-skiller. 3. For the second phase, a skitter, who executes the most optimal motions among the subjects, displayed a long flight time, a high height, and a far flight distance as well as maintaining consistent horizontal speed even at the peak of post flight. On the other side, a less-scorer displayed a slow vertical velocity, distance and a short time at the point of take-off from vault as well as low height at the peak of post flight.