• Title/Summary/Keyword: direct heat method

Search Result 263, Processing Time 0.028 seconds

A Study on the Quantity Analysis to the Heat Variation for the Stenosis of the Lumber by the Acupuncture-Moxa Cautery Stimulations (척추관협착증에 있어서 침과 뜸 자극에 의한 체열 변화의 정량적 해석에 관한 연구)

  • Jo, Bongkwan
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.17 no.3
    • /
    • pp.253-262
    • /
    • 2013
  • Objectives This study is on the quantifying method for the acupuncture-moxa cautery heat response index, which are based on the some definitions. Methods The magnitude of the acupuncture-moxa cautery is defined by the pain-feeling of the acupuncture-moxa cautery stimulation: the stimulation magnitude of the acupuncture is 1, that of the direct moxa-cautery is 2, and that of the indirect moxa-cautery is 0.5. The heat variation of the acupuncture-moxa cautery stimulation is defined by the heat variations of the characteristic points pre/post-stimulations in the stenosis of the lumber. The acupuncture-moxa cautery heat response index is defined by the ratio of between the magnitude of the heat variation and the natural logarithmic magnitude of the stimulation. Results With the respect of the acupuncture-moxa cautery heat response index, I experimented and estimated 4 types of stimulations in the stenosis of the lumber: the single acupuncture stimulation with 40%, the single direct moxa-cautery stimulation with 52%, the combinational acupuncture-moxa cautery stimulations with 27%, and the combinational acupuncture-indirect electronic moxa-cautery stimulations with 53%. Conclusions According to the acupuncture-moxa cautery heat response index. the combinational acupuncture-moxa cautery stimulations especially need to be changed to the combinational acupuncture-indirect electronic moxa-cautery stimulations.

Thermal Analysis on Twin-Roll Type Strip Continuous Casting Process Considering Contact Thermal Resistance between Molten Metal and Cooling Roll (쌍롤식 박판 연속주조공정에 있어서 용탕과 냉각롤의 접촉 열저항을 고려한 전열해석)

  • Kim, Y.D;Kim, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.189-205
    • /
    • 1996
  • The twin-roll type strip continuous casting process(or direct rolling process) of steel materials is characterized by two rotating water cooled rolls receiving a steady supply of molten metal which solidifies onto the rolls. A solidification analysis of molten metal considering phase transformation and thermofluid is performed using finite diffefence method with curvilinear coordinate to reduce computing time and molten region analysis with arbitrary shape. An enthalpy-specific heat method is used to determine the temperatures inthe roll and the steel. The temperature distribution of cooling roll is calculated using two dimensional finite element method, because of complex roll shape due to cooling hole in rolls and improvemnt accuracy of calculation result. The energy equaiton of cooling roll is solved simultanuously with the conservation equaiton of molten metal in order to consider heat transfer through the cooling roll. The calculated roll temperature is compared to experimental results and the heat transfer coefficient between cooling roll surface and rolling material(steel) is also determined from comparison of measured roll temperature and calculated temperature.

Analysis on Combustion Characteristics of CRDi Single-cylinder Diesel Engine with Direct Needle-driven Piezo Injector (직접구동 피에조 인젝터의 CRDi 단기통 디젤엔진 연소 특성 분석)

  • Chung, Myungchul;Sung, Gisu;Kim, Sangmyung;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.108-115
    • /
    • 2014
  • In this study, experimental approaching method was applied under and single-cylinder engine to research the performance of direct needle-driven piezo injector (DPI) for CR direct-injection. As key-point factor of this DPI that relies on direct-acting operating of injector needle, unlike conventional hydraulic-servo, its nozzle needle can be directly driven by piezo actuator. Thus, effect of direct-acting injection of DPI on diesel combustion and emission characteristics was investigated under common-rail single-cylinder direct-injection engine, equipped with three different driving mechanism, including indirect-acting solenoid, piezo and DPI system. As main results, it found that a direct-acting piezo injector has higher of IMEP. And it has higher heat release rate during premixed combustion and mixing controlled combustion phase due to its higher heat release, even though nitrogen oxide (NOx) formations were increased slightly.

Radiation-Laminar Free Convection in a Square Duct with Specular Reflection by Absorbing-Emitting Medium

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1346-1354
    • /
    • 2002
  • The purpose of this work is to study the effects of specularly reflecting wall under the combined radiative and laminar free convective heat transfer in an infinite square duct. An absorbing and emitting gray medium is enclosed by the opaque and diffusely emitting walls. The walls may reflect diffusely or specularly. Boussinesq approximation is used for the buoyancy term. The radiative heat transfer is evaluated using the direct discrete ordinates method. The parameters under considerations are Rayleigh number, conduction to radiation parameter, optical thickness, wall emissivity and reflection mode. The differences caused by the reflection mode on the stream line, and temperature distribution and wall heat fluxes are studied. Some differences are observed for the categories mentioned above if the order of the conduction to radiation parameter is less than order of 10$\^$-3/ fer the range of Rayleigh number studied. The differences at the side wall heat flux distributions are observed as long as the medium is optically thin. As the top wall emissivity decreases, the differences between these two modes are increased. As the optical thickness decreases at the fixed wall emissivity, the differences also increase. The difference of the streamlines or the temperature contours is not as distinct as the side wall heat flux distributions. The specular reflection may alter the fluid motion.

Rheological Aspect of the Plastic Energy Dissipation

  • Kim, Myung-Ho
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2003.05a
    • /
    • pp.93-98
    • /
    • 2003
  • In this paper, the main emphasis and focus will be to study and illuminate the nature of Plastic Energy Dissipation (PED) in variety of polymers. This PED term represents the heat generated during the irreversible deformation of a polymer solid. A series of experiments for various polymers have been conducted in direct measurement method and indirect evaluation method - the incremental strain stress relaxation ((ISSR) method. The experimental evidence to relate the stress relaxation and the sensible temperature rise were revealed by the series of direct method experiments.

  • PDF

Analysis of the thermal performances of air-earth direct heat exchanger (공기 지중간 직접열교환시스템의 열성능 해석)

  • Kim, W.K.;An, J.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.112-121
    • /
    • 1997
  • This study is focused on the development and selection of optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air. Finite volume method was adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF

Analysis on the thermal performances of air-earth direct heat exchanger in one year (공기 지중간 직접열교환시스템의 연중 열성능 해석)

  • Kim, W.K.;An, J.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.517-526
    • /
    • 1997
  • This study is focused on the development and selection of the optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air with buried pipes. Finite volume method is adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF

An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide (이산화탄소의 증발열전달 특성에 관한 실험적 연구)

  • 조은석;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2002
  • Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.

Two-Dimensional Benard Natural Convection with a Rectangular Body (사각 물체가 존재하는 2차원 Benard 자연 대류)

  • Yoon, Kyung-Soo;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.282-289
    • /
    • 2000
  • Direct numerical solution for flow and heat transfer for Benard convection with a body is obtained using an accurate and efficient Fourier-Chebyshev collocation and multi-domain method. The flow and temperature fields are obtained fur different Rayleigh numbers and thermal boundary conditions of body. The body has adiabatic and constant temperature conditions. The existence of a body gives different flow and heat transfer fields in the system, compared to pure Benard convection. The flow and temperature fields are also affected by the thermal boundary condition of a body.

  • PDF

A STUDY ON THE MARGINAL LEAKAGE OF CLASS II COMPOSITE RESIN INLAY (2급 와동 복합레진 인레이 충전 후 변연누출에 관한 연구)

  • Kang, Hyun-Sook;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.191-205
    • /
    • 1992
  • The purpose of this study was to evaluate the microleakage of class II composite resin inlays and compare them with the conventional light-cured resin filling restorations. Class II cavities were prepared in 60 extracted human molars with which cervical margins were located below 1.0mm at the cemento-enamel junction using No. 701 tapered fissure carbide bur. All of the prepared cavities were restored as follows and divided into 6 groups. Group I and 2 were restored using direct filling technique and group 3,4,5 and 6 were restored using direct inlay technique that was cemented with dual-cured resin cements. group I: Cavities were restored with light-curing composite resin, Brilliant Lux. group 2. Cavities were restored with light-curing composite resin, Clearfil PhotoPosterior. group 3: Cavities were restored with Clearfil CR Inlay and heat treated at $125^{\circ}C$ for 7 minutes. group 4: Cavities were restored with same material as group 3 and heat treated at $100^{\circ}C$ for 15 minutes. group 5: Cavities were restored with Brilliant (Indirect esthetic system) and heat treated at $125^{\circ}C$ for 7 minutes. group 6: Cavities were restored with same material as group 5 and heat treated at $100^{\circ}C$ for 15 minutes. All specimens were polished with same method and thermocycled between $6^{\circ}C$ and $60^{\circ}C$, then immersed in a bath of 2.0% aqueous solution of basic fuchsin dye for 24 hours. Dyed specimens were sectioned longitudinally and dye penetration degree was read on a scale of 0 to 4 by Tani and Buonocore's method 45). The results were as follows: 1. Microleakage was observed rather at the cervical margins than at the occlusal margins in all groups. 2. Composite resin inlay groups showed significantly less leakage than direct filling groups at the cervical margins (p < 0.001). 3. In composite resin inlay groups, there was no significant difference in microleakage between specimens by heat treating temperature and time (p > 0.05). 4. There was no significant difference in leakage between each groups at the occlusal margins (p > 0.05).

  • PDF